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NUMERICAL METHODS

AKXIRA MURAKAMI®, AXIHIKO Waxar” and Kazunor! Funsawai®

ABSTRACT

This paper provides a comprehensive survey of the numerical methods related to geotechnical problems, most of
which were reported in papers appearing in Soils and Foundations. The reason why most of the reviewed papers are
concentrated in Soils and Foundations is that if we were to include papers appearing in other journals in the field of
geotechnical engineering, closely related to numerical methods, e.g., Computers and Geotechnics, Ini. J. Numer.
Anal. Meth. Geomech., etc., we would have to deal with almost all the papers in those journals. Firstly, we present a
description of the current status of the numerical methods, and then give a brief review of the literature covering sever-
al topics in geotechnical applications. The scope of the review is limited, and thus, the authors do not profess to cover

the entire range of literature.

Key words: dynamics, embankment, excavation, FEM, inverse analysis, slope stability (IGC: E0/E2/E6/ES)

INTRODUCTION

The developments made in computational capabilities
over the last few decades have fostered equally impressive
developments in the numerical methods applied to vari-
ous engineering fields, including geotechnical engineer-
ing. Of particular importance is the emergence of the
Finite Element Method (FEM) for the solution of geo-
technical problems. Recent developments in a nonlinear
FEM for soil-water coupled problems, using sophisticat-
ed constitutive models, allow us to predict the behavior
of soil deposits and structures with high accuracy under
static/dynamic loading.

This review does not attempt to include all aspects of
the numerical analyses in geotechnical engineering. It fo-
cuses on the simulation methods developed as the ‘warp’
of the overview. The methods are classified into the fol-
lowing categories:

1) Nonlinear FEM under static/dynamic loading

2) Limit theorems: Upper/Lower bound methods and

shakedown analysis

3) Limit equilibrium method

4) Micromechanics and DEM

5) Inverse analysis

6) Other methods, i.e., Mesh-free methods, SPH,

Finite volume method and so on.
Among the above items, the limit theorems and their ap-
plications related to bearing capacity are addressed in
another paper entitled ‘Foundations’, and Micromechan-
ics and DEM are summarized in the paper entitled ‘Ge-
omaterial Behavior—Modeling’ in this special issue. To

i
if)

i)

facilitate some type of order to the review, the subject
matter related to such phenomena can be classified as the
‘woof” of the review.

1} Dynamics

2} Slope stability

3) Embankment/Excavation

4) Shear-band formation and localization

5) Foundations related to bearing capacity
Among the items listed above, ‘Foundations related to
bearing capacity’ is reviewed in another paper entitled
‘Foundations’ in this special issue.

Bold letters denote tensors, vectors or matrices. We ex-
plain some notations and symbols used hereafter for ten-
sor calculus. The symbol ‘-’ denotes an inner product of
two vectors or a single contraction of adjacent indices of
any two tensors

(e.g., {a-b)= ): a;; by, (b'c)ijk=¥ blcli;'k)-
4

The symbol ¢:’ denotes an inner product of a double
contraction of adjacent indices of second or higher order
tensors

(e.g., (exd);= § Czjkla’kl) .

The symbol ‘@’ denotes a dyadic product, e.g., (@ ® by
=a;by for any two vectors or tensors. The notation &
denotes a set of orthonormal base vectors in a given coor-
dinate system. The symbol ‘¥’ is a vector differential
operator which denotes
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d i
Y —e, where —
T de de
means the directional differential operator along the vec-
tor ¢. When the Cartesian coordinate system is adopted,
the positional coordinates are written as

. . 3
x=3 xe andV is described as ¥ o
i i i
‘The symbol ‘div’ denotes the divergence by operating
f+¥’ from the right of vectors or tensors

(e.g., divh=p-v =Z, abi/ ox;,
diva=a-v =7 dai/dxe=V -ar).
j

The symbol ‘grad’ denotes the gradient by operating ‘v’
for scalars

(e.g., grada=Va= E aa/axiei)

or multiplying ‘® V"’ for vectors and tensors from the
right
(e.g., grad b=b@V =Y, 9bi/oxe; ®ej).
b
In this paper, the signs of the stress and the strain compo-
nents are taken as positive (negative) when they are com-
pressive (tensile),

To save the calculation time, the analytical model with
a realistic geometry in 3D is often simplified into the alter-
native 2D geometry models. Problems, such as the analy-
sis of slopes, retaining walls, and the continuous foot-
ings, generally have one dimension very large in compari-
son with the other two. Hence, if the force and/or ap-
plied displacement boundary conditions are perpendicu-
lar to, and independent of, this dimension, all cross sec-
tion will be the same, Such conditions are said to be as
plane strain condition, where the stress in a direction per-
pendicular to the plane of interests is not zero. The strain
in the corresponding direction is zero.

On the other hand, axi-symmetric analysis is related to
the studies of the stress distributions in bodies of revolu-
tion under axi-symmetric loading. For example, a
uniform or centrally loaded circular footing, acting on a
homogeneous or horizontally layered foundation, has
rotational symmetry about a vertical axis through the
center of the foundation. Although those 2D approxima-
tions offer affordable and economic models, the predicted
results are often exaggerated. It is well known that the 3D
finite element analysis provides more realistic and ac-
curate results.

NONLINEAR FEM UNDER STATIC/DYNAMIC
LOADING

The finite element method (FEM) has long been un-
doubtedly the most popular, reliable and successful
method for numerically simulating the deformation of

grounds and structures. Since 1970, Soils and Founda-
tions has published more than 130 papers with ‘finite ele-
ment method’ among their keywords; these works have
helped to make FEM the most feasible numerical method
in geotechnical engineering.

FEM is a scheme for numerically solving differential
equations; it is suitable for numerical analyses related to
elliptic or parabolic partial differential equations. The
method discretizes spatially distributed variables, such as
displacement, with computational grids called finite ele-
ments, and the discretized variables are given at the nodal
points of the elements. The basic procedure for FEM is
summarized as follows:

L. Application of the weighted residual method
The distribution of the variables within an element is
described with approximate functions called shape
functions. The weighted residual technique is applied
within each element, where shape functions are adopt-
ed as the weighting functions. This procedure is
known as the Galerkin method; it is repeated for all
elements.

2. Assemblage
The equations obtained for each element are assem-
bled into a set of simultaneous linear equations, de-
pending on the geometry of the elements.

3. Solving the system of linear equations
The simultaneous linear equations are then solved
with respect to the dicretized variables at the nodal
points.

Application of the Weighted Residual Method

Let us take the following equilibrium equation, the
fundamental partial differential equation for the static
deformation of solids, as an example:

V-o+pb=0 (1

where

a(=§ oijei®ej), b(=; biei)

and p denote the Cauchy stress tensor, a body force per
unit mass and the density of solids, respectively. Stress-
strain relationships are needed for solving Eq. (1). For
simplicity, the following relation is assumed here:

[+
a=c:s=?z(u® V+u®v))=cum®y,
_ Gijut+ Cij

= 5 2)

where
C(= E Cisnl & ® €; & ek® ei) )
LAkl

C'(= > Cs'jklei®ej®ek®el),

(AR
£(=Eeijei®ej) and u(=E uies)
i i

are the material coefficient tensor, the infinitesimal strain
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tensor and the displacement vector, respectively. The
strain tensor ¢ in Eq. {2) neglects second-order terms of
the finite strain tensor, such as the Green-Lagrangian
finite strain tensor and the Almansi finite strain tensor,
assuming the inifinitesimal deformation. Symbols i, j, &k
and / are the positive integers of 1 to 3 in the three-dimen-
sional cases or 1 to 2 in the two-dimensional cases.

Figure I shows an example of the numbering of the
quadrangular elements and the nodal points. Let the
number of elements, the element numbers and the node
numbers be denoted by L, e and », respectively, and let
I{e) be a set of node numbers surrounding element e.
Taking Fig. 1 as an example, F{1)={1, 2, 4, 5} is ob-
tained. The displacement vector within an element is ap-
proximated into the following function:

ux)= Y @'N“"(x),
refe)

where ©4(x), " and N*'(x) respectively denote the ap-
proximate function of the displacement vector defined
for the element e, the displacement value at the nodal
point r and the shape function related to the nodal point r
of the element e, respectively. The elements and the node
numbers are consistently expressed as superscripts in this
section. Employing the Galerkin methed, the following
equation is obtained by integrating the governing equa-
tion on the domain of an element:

lsesl? (3)

E No(W-o+pb)dV=0, relle), l=<ex<l® (4)
pe

where V and V* denote volume (or area) and the domain
of element e, respectively. With the divergence theorem
of Gauss, Eq. (4) is reduced to the following form:

g VNe-r-ng=S Ne"n-adS-l-S NepbdV  (5)
yr 4 Ve

8
where

S, §° and n(=E_niei)

denote the boundary area (or length), the boundary sides
of element e and the outward unit normal vector at the
boundary, respectively. Substituting Eq. (2) into Eq. (5)
yields

v (5 VN“"-c’-VN""’dV)-ﬁ"
qe I'e) v

=S N‘?”n-aa’S+S NepbdV (6)
Sr ¢

¥

where g has been introduced to express the node number
as well as ». Letting the integrand of the left-hand side be

wr(= Y Ay ®e )
i

Equation (6) is rewritten as

E T 4er.fj9= j Nen-odS+ S NepbdV,
qe INe) 5* v
7487 = 5 VN .o NGV €}
Vt

which are linear equations with respect to #'(re I'(e)) on
element e.

Assemblage

The first term on the left-hand side of Eq. (7) must be
determined in order to solve the linear equations. Let the
boundary segments or the sides of element e, including a
nodal point p, be 8% (see Fig. 2). From the characteris-
tics of the shape functions, the above-mentioned term
satisfies the following equation:

S Non-cdS= 5 Ne'n-gdS )]
s o
because the values of the shape functions, N*", become
Zzero on the remote sides, which do not include nodal
point 7.

Letting e A(r) be a set of element numbers, including
the nodal point r on the boundaries of the elements (A(5)
=1{1, 2,3, 4} in Fig. 1, for instance), the foliowing equa-
tion holds true unless the nodal point r is located at the
global boundary of the computational region:

Y E N*n-gdS= Y,
eg A{r) 7 57

e Alr)

S Nen-gdS=10 )]
P

since the shape functions N®" are continwous, the out-
ward unit normal vectors n are opposite in direction and
o is assumed to be continuous between adjacent ele-
ments.

Taking the summation of Eq. (7), with respect to ee
A(r), the following equation is obtained with Eq. (8):

L L it= 3

ee A(r) qe Me) es A(r)

+ Y
eeAr) v Ve
This procedure is called assemblage. Unless nodal
point r is located at the global boundary, Eq. (10) can be
reduced to

T ¥ = Y
ee Alr} ge o) ee A{r)

with the aid of Eq. (9). When nodal point » is located at

the global boundary, the first term on the right-hand side

of Eq. (10) is determined by the imposed boundary con-
diticns.

S Nen-odS
5°

N®pbdV.  (10)

E N pbdV (11)
e

Solving the System of Linear Equations

Equations (10) and (11) are numerically solved by a
linear algebraic procedure. If the material coefficient of ¢
or ¢’ is not constant, for example, it depends on the
stress, and the stress-strain relationship is not linear, then
the nonlinearity requires iterative computation in order
to solve the simultaneous equations.
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r =9
O Nodal points
r=4
r=
r=3
Fig. 1. Example of the numbering of the elements snd the nodal
points

Fig. 2, Definition of the symbols for the element boundary

Soil-water Coupling

Soil consists of soil particles, pore water and pore air,
and the aggregation of the soil particles is called the soil
skeleton. Soil deformation is related to the stress state of
the soil skeleton, which is affected by the flow of pore
water and pore air. Therefore, when pore fluids play an
important role in the deformation of the soil, the stress
state of the soil skeleton needs to be analyzed simultane-
ously with the flow of pore water and pore air. Supposing
the voids of the soil are saturated with water, effective
stress o', defined as the stress exerted onto the soil skele-
ton, has the following relationship:

oc=c¢'—pl (12)

where p and
I (= 2, 6;e®e, Oy Kronecker’s delta)
i

denote the pore water pressure and the identity tensor, re-
spectively. Equation (12) is known as the principle of
effective stress and stress o is often called the total stress
in soil mechanics. When the coupled problem of the soil
skeleton and the pore water is treated, the equation of
motion for the soil mass should be described with the
effective stress and governing equations must be estab-
lished for the flow of pore water.

When the static deformation is of interest, the substitu-

tion of Eq. (12) reduces Eq. (1) into the following form:
Vo' —Vp+pb=0 (13)

where p corresponds to the apparent density of the satu-
rated soil. The effective stress is related to the displace-
ment of the solid (the soil skeleton in this case) via the
stress-strain relationship called the constitutive equa-
tions.

From the conservation of pore water and Darcy’s law,
the following equations concerning water seepage are es-
tablished for the simplest case:

k
V-o'+v.p=0, v'=—-——(Vp+pb 14
pfg( p+p'b) (14)

where

gmems). 5 v{-5wa)

and

k(= E kij8i® e;-)
b

denote the deformation velocity of the solids, the density
of the pore water, the magnitude of the gravitational ac-
celeration, the Darcy velocity of the seepage water and
the permeability tensor, respectively. Equations (13) and
(14) are the governing equations for soil-water coupled
problems in static deformation,

Finite Deformation and Constitutive Equations

When we intend to simulate the large deformation of
soil, such as in the case of landslides or long-lasting con-
solidation, computation based on the finite deformation
theory is required. The primary difference between in-
finitesimal (small} and finite (large) deformation concepts
lies in whether changes in the configuration of the
deforming solids are considered or not. Let us take the
linear elastic rod shown in Fig. 3(a) as an example. It is
fixed at the extreme left and has an initial length of L, and
a stiffness of E. Applying compressive stress ¢ at the ex-
treme right, the rod experiences compressive strain € and
the extreme right is displaced by . From the elastic
stress-strain relation, the following equation is obtained:

o=FEg, e=uy/Ly. (15)
From Eq. (15), displacement 4, is calculated as
ty=olLo/E. (1 6)

However, if the rod continues to be compressed and
the negative stress ¢ develops in Eq. (16), the absolute
value of displacement u, will exceed length L, when the
magnitude of o becomes greater than E, which is physi-
cally unnatural. This result comes from the fact that ¢ in
Eq. (15) does not consider changes in the rod length and
that Eq. (16) is based on the infinitesimal deformation
concept.

Here, letting increments in o, ¢ and 1, be Ao, d¢ and
Ay, respectively, and considering changes in the configu-
ration of the rod, the following equation is established in-
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Fig. 3. Illustration of & rod subjected to compressive loading

stead of Eq. {(15) by reference to Fig. 3(b):

Ac=EdAe, Ae=Au/ (Lo ). (17

Equation (17) can be reduced to the following differen-
tial equation:
do
— + .
duo E/(Lo Ho)
Using the condition of 1, =0 at g =0, the analytical so-
lution for Eq. (18) is given as foliows:

o= — Lo(1 — €E) (19)

which vields a realistic value for z; even if the negative
value for compressive stress ¢ develops. Equation (19} is
derived from the concept of finite deformation, which
takes into account the alteration of the rod length, with
the rate-type stress-strain relationship of Eq. (17). Com-
paring Egs. (16) and (19), disregarding changes in the
configuration of the rod leads to unrealistic results when
the deformation becomes large.

In order to deal with the finite deformation, a stress in-
crement which satisfies the equilibrium condition needs to
be determined. In the one-dimensional cases, as ex-
plained above, the stress increment is uniform within the
rod, so the distribution of the stress increment can be
easily calculated. In the two- and three-dimensional
cases, the incremental form of the equilibrium equation is
derived, as follows, by the material time differentiation of
Eq. (1)

V- o+ ¥V -v)o+t{o@V)o)+pb=0. (20a)

Further details on the derivation of Eq. (20) can be
found in textbooks on continuum mechanics. Using the
velocity gradient tensor L(=p® V) and the symbol ‘div’

and considering the symmetry of the Cauchy stress o, Eq.
{20a) is rewritten as below;

div (¢ + (tr LYo + cLT) 4+ pB=0.

(18)

(20b)

When soil-water coupled problems are of interest, Eq.
(12) is substituted into Eq. (20) and the water seepage is
simultaneously solved. The incremental form for the
equation of motion was presented by Noda et al. (2008)
for the numerical analyses of the dynamic response of
soil. With the aid of constitutive equations, Eq. (20) can
be numerically solved with respect to displacement rate v.

Then, updating the configuration of solids from the cal-
culated displacements, Eq. (20) is repeatedly solved for
the next time step. This procedure is called the updated
Lagrangian scheme.

Flasto-plastic or elasto-viscoplastic constitutive equa-
tions are often utilized to model soil behavior; they play
an important role in solving Eq. (20) because they
prescribe the relationship between ¢ and v. Asaoka et al.
(1997) explained in detail the formulation of an elasto-
plastic model to solve the incremental form of the
equilibrium equation. Kimoto and Oka (2005) presented
an elasto-viscoplastic constitutive model and explained
the finite element formulation for the computation of vis-
co-plasticity. The return mapping method is an iteration
algorithm used to calculate plastic strain; it is becoming
increasingly popular. A detailed procedure for the
method is given in Ortitz and Simo (1986) and Simo and
Hughes (1998). The theoretical and computational
framework of plasticity, based on finite deformation, has
been continuously in the process of development over
these past decades. The International Journal of Plastici-
ty and Computer Methods in Applied Mechanics and En-
gineering are helpful jowrnals for keeping informed of
the advancements in this area of research.

As a representative example, a set of governing equa-
tions for soil-water coupled problems within finite defor-
mation is listed as follows (see Yatomi et al., 1989; Asao-
ka et al., 1997)

- Equation of equilibrium of forces:

div S+ p/(tr D) =9,
S=¢+(tr Dyo—aL” (21)

where L, D(=(L+L7)/2), §, and b define the velocity
gradient, the stretching, the nominal stress rate of the
soil skeleton and a constant vector denoting the body
force per unit mass, respectively, and the raised dot ex-
presses the material time derivative.

~ Effective stress and pore pressure

o=g' —pl (22)
- Rate type constitutive equation of soil skeleton
T=L[D] (23)

where T denotes, for example, the Green-Naghdi effec-
tive stress rate, as shown below

T=6¢'+0'Q2—Qo', Q=RRT (24)

in which £ and R are the material spin tensor of the
solid phase and the rotational tensor derived from the
deformation gradient tensor.

—~Compatibility condition:

L=gradp=v® V'(ﬂi&)
ox
where v is the velocity vector and x is the current posi-
tion vector of the material point X of the soil skeleton,
respectively.
- Continuity condition of the soil-water system

(25)



882 MURAKAMI ET AL.

(S a’v) =S tr Ddy = — S v -nda (26)

v v a
where v’ is the discharge velocity of the pore water and
n is the unpit outward normal vector at the boundary
surface of the soil skeleton, and v and « denote the
volume and the area in the current configuration, re-
spectively.

- Darcy’s law

h
v'=—kgrad h=—k\7h(=mkg—r) ey
is the coefficient of permeability.
- Boundary conditions
v=b on I, {28)
§=5 on I (29)

where §, is the nominal stress rate defined in the follow-
ing manner:

s=58n (30}
k=K on I (31)
U;l = I_?:) Qn Fv' (32)
where pf is defined as follows:
h .
vi=—k g—x on the boundary 1. (33)

The weak form of the governing equations, except for
Eq. (26), is discretized in space and time for the FEM
computation. Equation (26), on the other hand, is com-
puted by the following discretization modified from Akai
and Tamura (1978) on the current configuration when the
calculation domain is under axi-symmetric condition as
seen in Fig. 4 (Asaoka et al., 1994).

4
X tr Dda= 3 oo pi=p), (34
a f=1

k b+ 10 )

o e 35
7 =
ura-i-rb
ri—-——-—z . (36)

Formulations for Dynamic Problems

The dynamic response analysis, based on the finite ele-
ment method, combined with the multi-dimensional con-
solidation theory (Biot, 1941) and the elasto-plastic con-
stitutive models, are powerful tools for analyzing the lig-
uefaction of saturated soil during strong earthquakes.
Saturated soil is a two-phase material with a skeleton and
a pore fluid phase. Biot’s equation, governing deforma-
ble porous media, can be expressed as

V -a+pb —pii— php=0 @37

where

w("—*; w;ei),

p and p/ denote the average relative displacement of pore

r(=x)

Fig. 4. Computation of the water flow under axi-symmetric condition
{after Asaokn et al., 1994)

water, the apparent density of saturated soil and the den-
sity of pore water, respectively. If the u-p formulation
(Zienkiewicz and Shiomi, 1984}, which is popular in re-
cent analyses for dynamic problems, is adopted and as-
sumes that the gradients of porosity and pore water den-
sity are smooth enough, the above equation for total mix-
tures can be simplified as

V-og+pb—pii=0. (38)

In the same way, the equilibrium equation for pore
water is given as

—Vp—R/=plii+pb=0 (39)

where p is the pore water pressure. R/ is the body force
due to seepage; it is equal to the hydraulic gradient times
the unit weight of the pore water. According to Darcy’s
law, the pore fluid seepage flows through the pores and
can be written as
R
=i X
112 o (40)

where & and g are the permeability tensor and the acceler-
ation of gravity, respectively.

On the other hand, using the principle of effective

stress, the continuity equation can be written as

, ] n 1—-n

V-ewtvV-ut|—+——|p= 41

(& Jp=0 @

where K°, K/ and n are the bulk modulus of the solid

material, the bulk modulus of the pore water and the

porosity, respectively. From Egs. (39) to (41), the follow-

ing equation is obtained:

1 n l-n
VA k- (—Vp+pb) | +V it |—+——\p=0. (42
(e peom)eras (2 & Jp=0. @
Equations (38) and (42) are coupled to simulate the dy-
namic behavior of saturated soil as a two-phase material.
After the finite element spatial discretization and the
Galerkin approximation, the governing equations can be
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expressed in the following matrix:

MU+ S BTg'dQ+Qp—f*=0, (43a)
R

QTU+Sp+Hp—f/=0 - (43p)

where M, U, B, o', O, p, § and H are the mass matrix,
the displacement vector, the strain-displacement matrix,
the effective stress vector determined by the soil constitu-
tive model, the discrete gradient operator coupling the
solid and fluid phases, the pore water pressure vector, the
compressibility matrix and the permeability matrix, re-
spectively. Vectors f* and f/ include the effects of the
body force and the prescribed boundary conditions for
the solid and the fluid phases, respectively. Equations
(43a) and (43b) can be integrated in time using a New-
mark type of scheme (Newmark, 1959). The sclution is
obtained for each time step using the modified Newton-
Raphson approach.

Shear Strength Reduction Method for Slope Stability
Analyses

A shear strength reduction technique for elasto-plastic
finite element slope stability analyses has been originally
developed by Zienkiewicz et al. (1975). According to the
formulations by Ugai (1989), the scheme is summarized
below.

At first, the assumed strength parameters, ¢ and &,
replace the corresponding values of ¢ and ¢ in the equa-
tion for the failure criterion of the soil. They are defined
by dividing ¢ and ¢ by a parameter F, namely,

= fﬁ (44a)
tan e»=ta;¢. (44b)

Stress and strain are then calculated within the slope
based on the conventional elasto-plastic finite element
procedure. The initial value of F is assumed to be
sufficiently small so as to produce a nearly elastic prob-
lem. Then, the value of F'is increased, step by step, until a
global failure finally develops, when it is judged that the
caleulations diverge. At this moment, F is considered to
be the actual global factor of safety for slope F..

Kobayashi et al. (2010) indicated the difference in
meanings given for the global factor of safety obtained by
the shear strength reduction method and by a rigorous
limit analysis with upper and lower bound theorems,
from the viewpoint of mathematics and mechanics. They
treated this problem as an optimization problem in order
to find the minimum value for parameter m, which is a
reciprocal of F under the given mechanical conditions.
According to a discussion on the concepts of the external
plastic work rate and the internal dissipation rate, it has
been proved that the relationships between the caleulated
global factor of safety and the ultimate limit load become
nonlinear in the shear strength reduction method if the
material is a frictional material. This is different from the
limit analysis results in which the relationships are linear.

This study provided us with important information to be
considered in slope stability analyses based on the elasto-
plastic finite element method.

FEM has been used for heat transfer and gas flow, as
well as for seepage, and its applications to soil behavior
affected by heat conduction or temperature effect can be
found. Britto et al. (1992) performed a finite element
analysis for the coupled problem of heat flow and con-
solidation for the disposal of high level radioactive waste
buried in the seabed. Savvidou and Britto (1995) carried
out a two-dimensional coupled heat conduction and con-
solidation analysis of soil barriers subjected to tempera-
ture gradients. Yashima et al. (1998) analyzed the one-
dimensional behavior of natural clay at different strain
rates and temperatures. Hibi (2008) developed a dusty gas
model for three gas phase components and analyzed the
movement of the gas phase components in soil for the de-
sign of soil vapor extraction and bio-venting systems, for-
mulating the model by FEM.

In order to simulate soil deformation under difficult
conditions, several sophisticated procedures for FEM
have been attempted. Poran and Rodriguez (1992) treat-
ed the dynamic compaction of dry sand induced by
repeated drops of a rigid tamper. They simulated the im-
pact behavior of sand, implementing special computa-
tional techniques for the remeshing and the reassignment
of the material properties required for large deformation
effects and the associated plastic behavior of this type of
sand. Asaoka et al. (1998b) proposed a theoretical for-
mulation for the incorporation of constraint conditions
imposed upon the displacement/velocity field of the soil-
water coupled system along the finite element discretiza-
tion scheme. The ‘no-length change’, ‘no-angle change’
and ‘no-direction change’ conditions were introduced as
internal constraints to the displacement/velocity field via
the Lagrange multiplier method.

The formulation of FEM assumes the continuity of
variables, which means that great difficulties are faced
when simulating phenomena that involve discontinuous
variables, such as emanating cracks and propagation
whereby the stress and strain become discontinuous. To
circumvent these problems, several methods, such as
XFEM (e.g., Moes et al., 1999; Budyn et al., 2004) and
PDS-FEM (Hori et al., 2005) have been proposed and are
presently being developed.

INVERSE ANALYSIS

The success of a numerical simulation, even by means
of the highly sophisticated FEM, largely depends on the
selection of an appropriate constitutive model and the ac-
curacy of the input data, i.e., the material data for the
adopted constitutive model, the initial/boundary condi-
tions, the geometry and so on. The most common way to
evaluate the material parameters of the constitutive
model incorporated into the FEM is to perform experi-
ments on a soil sample. However, there are shortcomings
to these tests: they are twofold. The first is that the defor-
mation fields generated within a soil specimen during the
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tests are not necessarily homogeneous. The second is that
soil samples are extracted from different soil layers which
exhibit a complex heterogenous profile. These shortcom-
ings might lead to a misunderstanding of the identifica-
tion of the material parameters and to a deterioration in
the accuracy of the FEM simulation for the behavior of
geotechnical structures.

To reduce the above uncertainties, an inverse method
using field measurements during the construction se-
quence can be adopted to identify uncertain parameters
and conditions. Inverse problems are found to be invert-
ed from ‘direct’ or ‘forward’ problems, which determine
the solution for x under observation y through operator
H, based on the equation y= Hx. The main objective of
inverse methods is to determine uncertain parameters and
conditions in a numerical model by comparing measured
and numerically computed quantities, i.e., settlement,
pore pressure, earth pressure and so on. The numerical
strategy for inverse problems is called an ‘inverse analy-
sis’, and the field of geotechnical engineering has a histo-
ry of alternatively using a particular term, ‘back analy-
sis’, in the sense that it is a backward analysis in compari-
son to a forward analysis.

Inverse problems often encounter threefold ill-posed-
ness whose characteristics are classified as the violation of
existence, uniqueness and stability of the solution, name-
ly, the solution for an inverse problem may not exist (the
problem is overdetermined), the inverse problem may
have many different sets of solutions (the problem is
underdetermined) or small changes in input may give rise
to large changes in the solution (the location points and
the number of required measurements should be chosen
properly), even if the corresponding direct or forward
problem is well-posed. Several strategies for inverse ana-
lyses have been proposed to well-pose these inverse prob-
lems. Identification is performed in an iterative way to
minimize the following objective function through differ-
ent manipulations:

min J(x|£)=min {Jo(x)+ 8J,(x)} 435

where

Jo(x) = {37 = p(x)}R {3 — p(x)},
Jo(x)=(x = %)M~ (x— %)

and f is a positive scalar adjusting the relative significance
of the observation to prior information. A set of values
for # and R branches into the following subclasses of in-
verse analyses:
1) Least squares method (8=0, R=1)
This method was the most commeon tool in earlier
works for inverse analyses in geotechnical engineer-
ing. The technique provides a numerical solution
for overdetermined inverse problems, but cannot
give any unique solution for underdetermined prob-
lems.
2) Maximum likelihood method (8=1, RxI)
The difference between the least squares method
and this technique is the weight of each observation,
depending on its significance. The resultant objec-

tive function of the projection filter (Tosaka and
Utani, 1993) eventually coincides with this function.
3) Bayesian method/Kalman or Extended Kalman
filter (8=1, RzI)
A formulation manipulated from a statistical view-
point provides this type of objective function and
relates to Tikhonov’s regularization (Tikhonov,
1963) when %=0. The extended Kalman filter can
deal with the nonlinear state/observation equations
by linearization with a Taylor series expansion.
4) Extended Bayesian method (8: optimal, R=1I)
A scalar parameter, f, relatively adjusts the sig-
nificance between observation and prior informa-
tion by considering the AIC (Akaike Information
Criterion; Akaike, 1978); the ABIC (Akaike-Baye-
sian Information Criterion; Honjo and Kashiwagi,
19913,

5) Data assimilation by Ensemble Kaiman filter/Parti-
cle filter
Data assimilation is an innovative tool which ex-
tends the inverse analysis to combine observations
of the current state of a system with results from a
mathematical model to produce an analysis, provid-
ing the best estimate of the current state of the sys-
tem. The ensemble of the Kalman filter (BnKF;
Evensen, 1994) and the particle filter (PF; Kitaga-
wa, 1996; Gordon et al., 1993) has been developed
for sequential data assimilation instead of the
Kalman/extended Kalman filter applied in earlier
works, namely, until the middle of the 1990s. In
both filters, the predictive probability density func-
tions of state variables are constructed by ensembles
or particles obtained from the Monte Carlo simula-
tion. Both filters can be easily applied to strong non-
linear problems, such as soil-water coupled prob-
lems, based on elasto-plastic geomaterials. The
filters are also applicable to non-Gaussian distribu-
tions of parameters. As the ensemble size or the
number of particles increases, the EnKF or the PF
should converge to the exact Kalman filter.

Inverse analysis techniques have been applied to geo-
technical problems since the 1980s (Asaoka, 1978; Asdo-
ka and Matsuo, 1982, 1984). Their use makes it easier to
evaluate the performance of geotechnical structures such
as the settlement prediction of embankment foundations
(Arai et al., 1984; Shoji et al., 1990; Ichikawa, et al.,
1992; Nishimura et al., 2002, 2005), the ¢bservation con-
struction control system for embankments (Shoji et al.,
1989), the investigation of the seismic properties of soil
(Arai et al., 1990; Honjo et al., 1998) and pile-soil inter-
action by neural networks (Nagaoka et al., 2001} and by
ABIC (Honjo et al., 2005) etc., by a quantifiable observa-
tional method. Recently, Murakami et al. have dealt with
data assimilation in geotechnical engineering by applying
the particie filter to the settlement behavior at Kobe Air-
port, constructed on reclaimed land, to identify a set of
parameters in an elasto-plastic constitutive model
(Murakami et al., 2009; Shuku et al., 2010).
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MESH-FREE METHODS, SPH, FINITE VOLUME
METHOD AND SO ON

Mesh-free methods have recently appeared as connec-
tivity-free between elements and nodes as alternatives to
FEM, which suffers from a high incidence of numerical
errors caused by distorted or low quality meshes (Nguyen
etal., 2008; Liu, 2009). In addition, due to the underlying
structure of mesh-based methods, it is difficult to deal
with discontinuities which do not ‘align with element
edges. The remedies for such limitations are remeshing
and discontinuous enrichment; however, the former is
time-consuming and requires much human labor and the
latter can be achieved only through particular types of
elements within the context of FEM. Mesh-free methods,
on the other hand, have some advantages in overcoming
the above difficulties. Table 1 lists some mesh-free
methods that have been developed so far.

The first attempt to apply mesh-free methods to geo-
technical problems was made by Modaressi and Aubert
(1998) using EFG with an elastic constitutive model. This
was extended by Murakami et al. (2005) using an elasto-
plastic constitutive model within a finite deformation.
Karim et al. (2002) applied this technique to the analysis
of a transient response of elastic saturated soil on the
seabed under cyclic loading due to wave motion. Sato and
Matsumaru (2006) used the EFG method to analyze lig-
uefaction phenomena when it became impossible to con-
tinue the computation within a large deformation regime
with the usual FEM. Oliaei et al. (2008} developed a new
formulation of EFG for solving coupled hydro-mechani-
cal problems, and Kumar and Dodagoudar (2009) made
an attempt to provide a simple, but sufficiently accurate
methodology for the numerical simulation of the two-
dimensional contaminant transport through saturated
homogeneous porous media and landfill liners using EFG
to overcome some difficulties when dealing with advec-
tion-dominant transport problems by conventional mesh-
based numerical methods which depend on mesh/grid
size and element connectivity.

Meshless strategies, except for EFG, have been applied
to geotechnical problems. Wang et al. (2001) used PIM to
solve Biot’s consolidation equation for elastic materials,
MNogami et al. (2004) incorporated the double porosity
model into the radial PIM to analyze lumpy clay fillings,
and Wu et al. (2001) introduced a Lagrangian reproduc-

Table 1.

ing kernel formulation into the analysis for clay stratum
subjected to footing load.

Smoothed Particle Hydrodynamics (SPH) is also wi-
thin the category of mesh-free methods used to approxi-
mate the strong form of a partial differential equation
(PDE) by choosing a smooth kernel and using it to local-
ize the strong form of the PDE through a convoluted in-
tegration (Gingold and Managhan, 1977; Lucy, 1977). So
far, many improvements have been incorporated to over-
come the instabilities and inconsistencies in numerical
computations, see, e.g., Li and Liu (2002), Liu and Liu
(2010).

With regard to geotechnical applications of the SPH,
Maeda et al. have applied this technique to the generation
of air bubbles within a soil and to seepage failure in the
context of soil-liquid-gas interaction (Maeda et al., 2006,
2010). Bui et al. (2008) implemented the Drucker-Prager
model with the associated/non-associated flow rule into
the SPH to allow the solving of elastic-plastic flows of
soil, and applied the proposed strategy to a large defor-
mation and the post-failure of cohesive/non-cohesive soil
(Bui et al., 2008). Li et al. {2007) have developed a cou-
pled discrete particle-continuum model for saturated
granular materials, characteristic-based Smoothed Parti-
cle Hydrodynamics (CBSPH) which models pore fluid
flows relative to the deformed solid phase as a packed as-
semblage of interacting discrete particles with voids by
DEM (Li et al., 2007).

The finite volume method (FVM) has been a powerful
tool for numerically solving partial differential equations,
especially for fluid dynamics, such as the Navier-Stokes
equations and shallow water equations, and recent de-
velopments in the method are remarkable. The Journal
of Computational Physics is one of the most helpful jour-
nals in giving an overview of the method, because it in-
cludes a large number of papers related to the fundamen-
tals and applications of FVM. The method divides a com-
putational domain into a sufficient number of cells, which
are analogous to elements for FEM. FEM gives the calcu-
lated values at the nodal points, while FYM outputs them
at the centroids of the cells. FVM realizes a low computa-
tional load and is advantageous in that it can stably solve
differential equations with advective terms. As for com-
putational studies on geotechnical problems, Nishigaki et
al. (1986) applied FVM to a saturated-unsaturated
seepage analysis, although they described the method as

Overview of some mesh-free methods (revised from Liu, 2609)

Method References Formulation procedure  Local function approximation

Diffuse element method  Nayroles ef af. Galerkin weak form MLS

EFG or EFGM Belytshcko ef al. Galerkin weak Form MLS

MLPG Atluri et al. Local Petrov-Galerkin = MLS

PIMs Liu et al. Local Petrov-Galerkin  Point interpolation using polynomial and radial basis fn.
SPH Lucy; Gingold and Monaghan  Strong form Integral representaiion, Particle approximation

GSM Liu ef al. Weakform-like Point interpolation

Finite point method Onate et al. Strong form MLS

RKPM Liu et al. Strong or weak form  Reproducing kernel

hp-Clouds Oden and Abani Strong or weak form Partition of unity, MLS

Partition of unity FEM  Babiska and Melenk

Weak form

Partition of unity, MLS
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an ‘Integrated Finite Difference Method (IFDM)’, and
Fujisawa et al. (2010) have used the method to solve the
advection equation of eroded soil particles migrating wi-
thin soils. Rapid advancements are being made with FVM
and its potential for use in geotechnical applications is ex-
pected to be soon realized.

DYNAMICS

Strictly speaking, all phenomena should be regarded as
dynamic problems. However, if the deformation of an
object is slow enough, from an engineering point of view,
it can be said that the behavior is affected by neither ve-
locity nor acceleration. A strategy of formulations well
known as a ‘static’ analysis, which ignores the viscous
resistance and the inertial force, is widely used for such
problems.

On the other hand, high-speed deformation phenome-
na with wave propagations, induced by seismic motion
and impact force, etc., are usually modeled as ‘dynamic’
problems. In these sorts of problems, the behavior can be
generally described with the equation of motion of the
system. This equation is often represented as the follow-
ing simple equation, which was originally extended from
the concept of the Voigt model for a conventional single-
degree-of-freedom model with mass, spring and dashpot.

MU+CU+KU=f (46)

where M, € and K are the mass, viscosity and stiffness
matrices for the discretized system, respectively, U/ and f
are the relative displacement vector to the fixed base in
the analysis and the external force vector acted to the sys-
tem, respectively. In usual seismic response analyses, fis
given as the inertia force induced by the input base mo-
tion. This model is used most frequently nowadays, be-
cause its performance has been proved to be guite similar
to the real dynamic behavior of soil and structures, ac-
cording to the results of many demonstrative studies on
various objects. .

Generally speaking, numerical methods applied to
solve the above equation directly are called ‘dynamic
response analyses’, and they are classified into two kinds
of analyses, i.e., analyses in the frequency domain and
analyses in the time domain.

The former, analyses in the frequency domain, are
often used for assessing the vibration mode and the eigen-
values of the system (e.g., Kagawa, 1983; Sakaki et al.,
1985; Pitilakis and Moutsakis, 1989; Watanabe and
Kawakami, 1995). Here, the analyzed system is usunally
assumed to behave as a linear material, including the e-
quivalent linear modeling. This simplification is due to
the limitation of mathematical procedures like the Fouri-
er transform. Since the response is assumed to be linear,
the residual deformation that remains after an earth-
qguake cannot of course be predicted directly by this type
of analysis.

The latter, analyses in the time domain, comprise a
more popular strategy for simulating the actual
phenomena precisely. They directly integrate the equa-

tion of motion and are based on a time integration
scheme such as the Newmark’s § method. It is easy to
take into account the material nonlinearity, including
changes in soil properties with time. In early times, this
type of analysis was applied mainly for seismic response
analyses of 1D multi-layered grounds (Oka et al., 1981;
Kawamoto et al., 1982), which are rather simple prob-
lems.

Before long, the progress of computer technology after
the 1990s brought about the rapid increase in the capacity
of computer memory and the speed of computing., Many
complicated problems, thought to be impossible to
remedy in the past, were solved after the use of powerful
computers. As an example, a skillful method to prediet
the residual deformation of an embankment after an
earthquake, by combining an equivalent linear dynamic
analysis and an elasto-plastic static analysis, was reported
by Kuwano et al. (1991). Of course, the development of
the numerical analysis was accomplished by the improve-
ment of the numerical technique as well as by the com-
puter itself. Fundamental studies on the essentlal ele-
ments in numerical procedures have also been conducted
by many researchers, e.g., lateral dashpots in BEM by
Fukuwa and Nakai (1989), the modification of input mo-
tion by Hunaidi et al. (1990), infinite boundaries by
Anandarajah (1993), the large deformation effect by Li
and Ugai (1998), the limitations of the coupled dynamic
analysis by Pietruszeczak and Parvini (2001} and non-
linear amplification by Tokimatsu and Sekiguchi (2006).

[t is known that among the most common problems in
geotechnical earthquake engineering are the problems
related to earth structures, Many finite element studies on
earth structures mainly focused on the prediction of
residual deformation, using the elasto-plastic models in
total stress formulations (e.g.,Psarropoulos et al., 2007;
Feizi-Khankandi et al., 2009; Wakai et al., 2010), which
are sufficiently simple and convenient for engineering
practice in seismic design. The shakedown analysis was
also tried, and was one of the more skillful techniques in
design practice (Ohtsuka et al., 1998).

As a more rigorous way of modeling, constitutive
models in effective stress formulations can be applied to
the soil-water coupled problems. Finite element codes
equipped with such numerical models can simulate a so-
called liquefaction phenomenon, or strain softening un-
der cyclic loading, due to the increase in and the dissipa-
tion of the excess pore water pressure in a saturated
ground during and after a strong earthquake {(e.g., Mat-
suo et al., 2000; Onoue et al., 2006; Namikawa et al.,
2007), which is one of the most important design issues to
be resolved nowadays. Various constitutive models have
been introduced into the finite element analysis with the
appropriate nonlinear algorithms, encouraged by the
progress of the modeling of soil properties described in
elasto-plastic frameworks. Among the most essential and
impressive research in the field of numerical analysis re-
cently is the work Noda et al. (2008) have done in devel-
oping a new numerical model based on the soil skeleton-
pore water coupled equation that includes the effect of the
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inertia term. This method allows changes in the geometric
shape of the soil to be taken into account and is capable
of dealing with all types of external forces irrespective of
whether they are static or dynamic.

The purpose of dynamic response analyses for earth
structures is mainly to predict the residual deformation of
the embankment and the ground precisely, which accords
with the requirements in design practice improved after
the Kobe earthquake. The most important concern in
seismic design is the gradual switching over from the “‘ul-
timate state’’ to the ‘‘allowable deformation® of each
structure. Such a point of view will be helpful in develop-
ing a performance-based design code in the near future.

Many finite element studies on the ground-structure
system subjected to earthquake moticn have been con-
ducted as well, e.g., bridge and pile foundations by
Kimura and Zhang (2000) and Zhang and Kimura (2002),
the simulation of statnamic load tests by Kimura and
Boonyatee (2002), quay walls and seawalls by Iai and
Kameoka (1993), Kanatani et al. (2001) and Dakoulas
and Gazetas (2005) and tunnels by Khoshnoudian and
Shahrour (2002). It is very important for such ground-
structure problems to improve the modeling of the dy-
namic and nonlinear interaction between the ground and
the structures.

SLOPE STABILITY

An evaluation of slope stability is always required for
the design of embankments and slope cutting, which are
well known as typical engineering problems in geo-
technical engineering. In engineering practice, it has been
recognized that the stability of slopes can be evaluated by
an engineering concept based on the global factor of safe-
ty for slope failure, where the balance of the sliding force
due to the self weight and the shear resistance of the soil
in the slope are considered. This concept can also include
a pseudo-static seismic force component used in conven-
tional seismic design. In this sort of method, the soil is as-
sumed to be a rigid perfectly-plastic material with no elas-
tic deformation. Such a simplification makes it possible
to realize simple numerical methods for slope stability
analyses which are useful for design practice. It is also im-
portant that such a design strategy be regarded as an en-
gineering decision on the safer side.

One of the most popular slope stability analysis
methods is the limit equilibrium method (e.g., Jiang and
Yamagami, 2004; Cheng and Zhu, 2004; Zheng et al.,
2009). Tt is applied to evaluate the global factor of safety
based on the comparison of forces acting along the as-
sumed slip surface of a slope, i.e., the sliding force due to
the self weight and the maximum shear resistance of the
soil. In practice, for convenience, the forces are often
evaluated for each slice into which the sliding block is
divided. One of the key issues in this method is the use of
appropriate shear strength parameters mobilized along
the assumed slip surface (e.g., Shogaki and Kumagai,
2008). .

Although this method is easy to use and has been wide-

Iy applied to engineering practice, it may often provide
imperfect solutions, because the internal forces in the
sliding block cannot be considered appropriately with
this method. A more reliable method within rigid perfec-
tly-plastic frameworks may be the limit analysis method,
which is rigorously based on appropriate limit mechani-
cal theorems (e.g., Baker, 2004). This method can pro-
vide perfect solutions for the ultimate state of the slope,
where all the required mechanical conditions are taken
into account in its formulations.

The global factor of safety can also be evaluated by the
elasto-plastic finite element analysis with the shear
strength reduction method (SSRM) (Ugai, 1989; Matsui,
1992), which was originally proposed by Zienkiewicz et
al. {1975). The elasto-plastic FEM was also applied to re-
inforced slope problems (Matsui and San, 1989, 1990;
Kodata et al., 1995; Zornberg and Kavazanjian, 2001)
and problems with stabilizing piles in a slope (Cai and
Ugai, 2000). Slope failures induced by heavy rainfall can
be evaluated by the combination of the seepage analysis
and the stability analysis (Toyota et al., 2006; Wei and
Cheng, 2010). If the soil is assumed to be a strain-soften-
ing material in the analysis, a progressive failure of the
slope can be simulated by an elasto-plastic FEM (Zhang
et al., 2003; Ye et al., 2005), which is useful for simulat-
ing the process of slope failure precisely. The global fac-
tor of safety obtained from FEM with SSRM was com-
pared to the one from the limit equilibrium method {San
et al., 1994; Ugai and Leshchinsky, 1995), showing that
these factors are mostly close to each other. Strictly
speaking, it has been indicated that the physical meaning
of the global factor of safety evaluated by FEM with
SSRM is slightly different from the meaning by the afore-
mentioned limit analysis (Kobayashi et al., 2010). This
may cause a problem in cases where the factor should be
treated as a physical value with quantitative meanings.

The concept of the ultimate state corresponding to the
slope failure with a clear slip surface is very convenient
for engineering purposes. However, the actual phenome-
na do not always agree with such a mechanism, especially
in cases where the seismic motion causes the slope to be
deformed largely without collapse. Therefore, for the
evaluation of slope stability at the time of a strong earth-
quake, the focus of the analysis is often placed on the
residual deformation, not on the global factor of safety.
Such a deformation can be easily predicted by the dynam-
ic response analysis based on the elasto-plastic finite ele-
ment method (e.g., Li and Ugai, 1998; Wakai and Ugai,
2004; Onoue et al., 2006). One of the essential items in
such simulations is to consider the soil properties under
cyclic loading appropriately, for example, the strain am-
plitude dependency in the apparent shear modulus and
the damping ratio. In addition, if the soil is assumed to be
a strain-softening material under cyclic loading, a long
distance travelling failure of the slope can be simulated
numerically (Wakai et al., 2010), which has sometimes
been observed at the time of recent strong earthquakes.

Furthermore, as a conventional method of prediction,
Newmark’s sliding block theory (Newmark, 1965), which
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uses the critical seismic coefficient obtained from the limit
equilibrium slope stability analysis, can be used to predict
the sliding displacement during an earthquake (e.g.,
Shinoda et al., 2006). This method is very simple and use-
ful for design, but users should understand the limita-
tions of the coverage of its application field due to the in-
completeness in the mechanical assumptions used in the
method.

EMBANKMENT/EXCAVATION

Embankments, such as earth-fill dams, levees and road
embankments, are the most common earth structures and
have been important targets for soil mechanics. The set-
tlement of the ground due to embankment loading and
the stability of the embankments have been of such great
interest in practice that a number of computational stu-
dies have been done to predict the behavior of the em-
bankments using several numerical methods. Among the
methods, FEM has been a central method up to now. The
estimation of deformation and stability requires the de-
termination of the stress state within the earth structures
by solving the equilibrium equation for static problems or
the momentum equation for dynamic problems with
relevant constitutive models. Adopting the concept of
effective stress involves the simultaneous analysis of
water seepage with the stress state to determine the distri-
bution of pore water pressure, which leads to the so-
called soil-water coupled analysis. For a seepage analysis
of embankments subjected to ceaseless or frequent water
seepage, the technique proposed by Neumann (1973), giv-
ing the natural boundary condition at the seepage faces,
has often been employed.

Finite element analyses of embankment deformation
appeared in the 1970s. Shoji and Matsumoto (1976) ap-
plied FEM and conducted soil-water coupled analyses,
assuming a small deformation, to calculate the consolida-
tion of embankment foundations. Narita and Ohne
(1978) investigated the cracking potential caused by
differential settlements in the longitudinal sections of
high embankments by a numerical simulation with FEM.
These early computational works regarded the embank-
ments as (linearly) elastic materials and were oriented
toward static problems. Elastic deformation analyses can
predict the deformation of structures, but entail difficul-
ties in predicting the slip surfaces or sliding.

Dynamic analyses of soil structures are realized by di-
rectly solving the equation of motion with a time integra-
tion scheme as well as by spatial discretization methods
such as FEM. Taniguchi et al. (1983) numerically calcu-
lated the final displacement of earth dams induced by an
earthquake, conducting an equivalent static analysis with
FEM. Kuwano et al. (1991) carried out both a nonlinear
static analysis and an equivalent linear dynamic analysis
to estimate the residual deformation of embankments af-
ter earthquakes.

As the nonlinear computation scheme and the constitu-
tive models for soil, treating the developed elasto-plastici-
ty or elasto-viscoplasticity, the finite element analysis in-

novating these models became popular for the prediction
of the deformation and the stability of embankments in
both static and dynamic problems (e.g., lizuka and Chta,
1987; Sakajo and Kamei, 1996; Matsuo et al., 2000; Iizu-
ka et al., 2003; Pagano et al., 2009). The above finite ele-
ment analysis with these'models has been utilized for the
recent performance-based design of earth dams (e.g.,
Tani et al., 2009; Sica and Pagano, 2009). Elasto-plastic
and elasto-viscoplastic models require the current stress
to calculate the relation of the stress and strain rate.
When these models are applied to predict the mechanical
behavior of an embankment, it should be noted that the
initial stress distribution within the embankment is neces-
sary and that the construction analysis is a feasible proc-
ess for obtaining the initial stress state. Recently, the
combination of a rate-based elasto-plastic constitutive
mode] and the FEM of the finite deformation formula-
tion has enabled the continuous analysis of the construec-
tion, the consolidation, the earthquake response, the
deformation and the stability of embankments after
earthquakes (Noda et al., 2009).

Excavation, such as tunneling, is an unloading proce-
dure, contrary to the construction of embankments. The
finite element analysis of an excavation requires the
release of the equivalent nodal forces of the earth pres-
sure of the excavated elements and the removal of their
stiffness, while the construction analysis of embankments
involves the application of the equivalent nodal weight of
the constructed elements and the generation of their stiff-
ness. The basic procedure for the release of earth pressure
is summarized as follows:

1. Calculate the equivalent nodal forces of the earth
pressure of the excavated elements,

2. Apply the nodal forces equal in magnitude and oppo-
site in sign to the excavation surface.

Several numerical analyses of excavations have been done

by Christian and Wong (1973), Nakai et al. (1997),

Komiya et al. (1999} and Nakai et al. (2007), for instance,

A detailed review concerning excavation is presented in

the paper entitled ‘Model Test and Numerical Analysis

Methods in Tunnel Excavation Problem’ in this issue.

SHEAR BAND FORMATION AND LOCALIZATION

FEM has been applied to a variety of geotechnical
problems, such as shear band formulation, progressive
failure, bifurcation, gas flow, parameter identification, as
well as soil deformation and seepage. A number of works
have been devoted to the numerical simulation of consoli-
dation, the shearing bebavior, and seepage (e.g., Kono,
1974; Matsumotao, 1976; Matsui and Abe, 1981; Matsuo-
ka et al., 1990; Maekawa et al., 1991; Hsi and Small,
1993; Yashima et al., 1998; Asaoka et al., 1998a; Conte,
1998).

. The implementation of the finite deformation theory
into finite element analyses permitted the tracking of the
soil deformation close to failure, which enabled shear-
band formulation and bifurcation to be numerically
simulated by FEM. Yatomi et al. (1989) conducted a soil-
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water coupled analysis with FEM and succeeded in
simulating the formulation of shear bands with a non-
coaxial Cam-clay model by formulating finite strain and
employing the updated Lagrangean scheme. Tanaka and
Sakai {1993) analyzed the progressive failure and the scale
effect of trap-door problems, developing an elasto-plastic
model including the shear band effect. Asaoka and Noda
(1995) simulated imperfection-sensitive bifurcation by a
soil-water coupled finite deformation analysis. They rev-
ealed that one of the possible reasons for the rate depen-
dency of the undrained shear strength of saturated clay
was the effect of pore water migration on the imperfec-
tion-sensitive bifurcaticn behavior of saturated clay.
Strain localization into shear bands was taken into con-
sideration for the numerical simulation of the bearing
capacity characteristics of strip footing on sand (Siddi-
quee et al., 1999). An elasto-viscoplastic constitutive
model was extended to describe the instability of the
failure state which is connected to structural degradation.
The model can reproduce the apparent compressive strain
localization regarded as compaction bands, when struc-
tural degradation is considered (Kimoto and Oka, 2005).

SUMMARY

In this survey, numerical methods and their applica-
tions deveioped over several decades in geotechnical en-
gmeermg have been reviewed. In this overview, most of
references are among papers appeared in Soils and Foun-
dations except specific papers from other journals dealing
with related topics. Simulation methods developed over
fifty years are classified into six categories according to
the methodologws as the ‘warp’ of this review, and their
details and characteristics are presented except two cate-
gories, namely, ‘Limit theorems’ and ‘Micromechanics
and DEM?, because they are summarized in other chap-
ters within this spemal issue. Applications of such simula-
tion methods are aiso cla351ﬁed into five categories as the

‘woof” of this review based on subject matters related to
phenomenato . facilitate type of order to this survey.
Although“theadvances: in computational methods for
geomechanics have reached the same level of or almost
surpassed those of other engmeerlng fields in the past de-

cades, there still many tasks and challenges remaining to
solve the complex:behavior of soils.
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