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a b s t r a c t

The development of stability problems related to classical mixed methods has recently been observed. In
this study, a soil-water coupled boundary-value problem, one type of stability problem, is presented
using the element-free Galerkin method (EFG method). In this soil-water coupled problem, anomalous
behavior appears in the pressure field unless a stabilization technique is used. The remedy to such
numerical instability has generally been to adopt a higher interpolation order for the displacements than
for the pore pressure. As an alternative, however, an added stabilization term is incorporated into the
equilibrium equation. The advantages of this stabilization procedure are as follows: (1) The interpolation
order for the pore pressure is the same as that for the displacements. Therefore, the interpolation func-
tions in the pore pressure field do not reduce the accuracy of the numerical results. (2) The stabilization
term consists of first derivatives. The first derivatives of the interpolation functions for the EFG Method
are smooth, and therefore, the solutions for pore pressure are accurate. In order to validate the above
stabilization technique, some numerical results are given. It can be seen from the results that a good
convergence is obtained with this stabilization term.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In recent decades, the development of numerical computation
technologies has enabled a variety of engineering problems to be
solved and has brought about remarkable progress. Among the re-
lated findings, meshless and/or mesh-free methods in particular
have been applied to some problems for which the usual finite
element method is ineffective in dealing with significant mesh dis-
tortion brought about by large deformations, crack growth, and
moving discontinuities.

Various meshless and/or mesh-free methods have been used for
geotechnical problems, instead of the finite element method, to
overcome the above-mentioned difficulties. Consolidation phe-
nomena have been analyzed by means of element-free Galerkin
method (EFG method) [1–4], the point/radial point interpolation
method (PIM/RPIM) [5,6], the local RPIM [7], RKPM [8,9], and the
natural neighbor method [10], the transient response of saturated
soil has been dealt with under cyclic loading by means of EFG
Method [11,12], wave-induced seabed response and instability
have been examined by EFG Method [13] and RPIM [14,15], slip
lines have been modeled by geological materials using EFG Method
ll rights reserved.

: +81 852 36 5218.
[16], and a Bayesian inverse analysis has been carried out in con-
junction with the meshless local Petrov-Galerkin method [17].

However, unless certain requirements are met in dealing with
soil-water coupled problems for the finite element computation,
based on the coupled formulation becoming ill-conditioned,
numerical instabilities will occur [18]. The cause of this phenome-
non is the over-constrained system of the equation. A widely used
technique to overcome the instabilities consists in the coupled for-
mulation. However, it is well known that not all the approxima-
tions lead to fully convergent solutions like soil-water coupled
problems. In order to overcome these weaknesses, several strate-
gies have been proposed [19,20]. For example, as a necessary con-
dition for stability, the interpolation degree of the displacement
field must be higher than that of the pore pressure field. In an equi-
librium equation, displacement has derivatives that are one order
higher than pore water pressure. For the displacement-pore water
pressure mixed mode, equal-order interpolation is not consistent
because it validates the Babuska-Brezzi condition or the much sim-
pler path test proposed by Zienkiewicz and Taylor. An alternative
means of stabilization was also proposed based on the Simo-Rifai
enhanced strain method which even allows an equal order of
interpolation degree for both variables.

However, these strategies are not directly applicable to mesh-
less/mesh-free methods, because all the nodal points simulta-
neously have the same degree of freedom for both the
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displacement field and the pore pressure field, and no information
between the element and the nodes can be utilized.

Only a few attempts have been made, e.g., the backward Euler
scheme for RPIM could be used to avoid spurious oscillation [21],
and an unequal-order RPIM was introduced to alleviate numerical
oscillation and improve accuracy for solution. In the latest litera-
ture, a three-point approximation technique with a variable time
step has been proposed to avoid spurious ripple effects [22], and
the stable EFG procedures considering Lagrange multipliers have
also been presented [23]. The question of how a stabilization
scheme should be developed with meshless methods is still an
open topic.

The purpose of this paper is to present a stabilization method-
ology for the mesh-free analysis of soil-water coupled problems
by incorporating the stabilizing term into the weak form. The
advantage of this procedure is that the interpolation functions in
the pore pressure field do not reduce the accuracy of the numerical
results. Moreover, the methodology is similarly applicable to other
coupled problems using EFG.

The following sections deal with descriptions of the formula-
tion, an analysis of the bench mark test, and a foundation subjected
to continuous loading within the framework of finite strain. Sec-
tion 2 presents the formulation, including the stabilization term.
In Section 3, two applications of the strategy to soil-water coupled
problems are analyzed, one being the saturated soil column test
appearing in Mira et al. [20], to demonstrate the effectiveness of
the strategy, and the other being the foundation behavior under
a displacement-controlled condition, for which the feasibility of
the analysis will be thoroughly discussed. The conclusion follows
in Section 4.
2. Formulation

The governing equations for soil-water coupled problems with
boundary conditions and initial conditions are given as follows:

2.1. Governing equations

(a) Continuous equilibrium equation
Z
V

div _StdV þ qwð
Z

V
tr D dVÞb ¼ 0; _St ¼ _T þ ðtr DÞT � TLT

ð1Þ
where _St is the nominal stress rate, qw is the density of water, b is
the body force per unit mass, T is the total Cauchy stress, _T is the
Cauchy stress rate, L is the velocity gradient, D is the stretching,
and V is the domain.

(b) Effective stress concept
T ¼ T 0 � pwI ð2Þ
where T0 is the effective stress, pw is the pore water pressure, and I is
the unit tensor.

(c) Constitutive equation
T 0
�
¼ L½D� ð3Þ
where T 0
�

is the Jaumann rate of the effective stress.
(d) Continuity condition of soil-water coupled problems
tr Dþ divvw ¼ 0 ð4Þ
where vw is the average velocity of the pore water and the above
equation is derived under the assumption that the skeleton grains
and the pore fluid are incompressible.

(e) Darcy’s law
vw ¼ �k I grad hw ð5Þ
where k is the permeability and hw is the total head.
(f) Boundary conditions
_Stn ¼ �_st on Ct

v ¼ �v on Cv

�q ¼ �vw � n on Cq

hw ¼ �hw on Ch

ð6Þ
where n is the unit normal vector at the boundary, �_st is the bound-
ary value of the traction, v is the velocity, �v is the boundary value of
the velocity, �q is the discharge per unit area with units of length per
time, �hw is the boundary head, �vw is the boundary velocity of the
pore water, Ct is the stress boundary, Cv is the velocity boundary,
Cq is the discharge boundary, and Ch is the hydraulic boundary.

(g) Initial conditions
T 0 ¼ T 0jt¼0 in V

hw ¼ hwjt¼0 in V
ð7Þ
2.2. Constitutive equation

Herein, we briefly describe the Cam-clay model for finite strain
according to Asaoka et al. [24]. It is firstly assumed that stretching
tensor D is divided into elastic and plastic components.

D ¼ De þ Dp ð8Þ

The total volume change of the soil skeleton is expressed with the
above two terms:Z t

0
Jtr D ds ¼

Z t

0
Jtr Dedsþ

Z t

0
Jtr Dp ds ð9Þ

where J ¼ det F ¼ 1þe
1þe0

; F is the deformation gradient tensor, and
1 + e and 1 + e0 are the specific volumes at current time t and refer-
ence time t = 0, respectively. The first term in the above equation is
written in the following form:Z t

0
Jtr De ds ¼ �

~j
1þ e0

ln
p0

p00
ð10Þ

where p0 and p00 are the mean effective stresses at the current and
the reference states, respectively, and ~j is the swelling index.

The total volume change of a soil skeleton should be indepen-
dent of the stress path according to Henkel [25], and it is a function
of only the initial and the current effective stresses. This is ex-
pressed as the sum of the isotropic compression term and the
one due to dilatancy, as seen in Ohta [26]:Z t

0
Jtr D ds ¼ �

~k
1þ e0

ln
p0

p00
� D

q
p0
¼ �

~k
1þ e0

ln
p0

p00
�

~k� ~j
Mð1þ e0Þ

q
p0

ð11Þ

where ~k is the compression index, q is the second invariant of devi-
atoric stress, D is the dilatancy parameter, D ¼ ~k�~j

Mð1þe0Þ
, and M is the

critical state parameter.
By subtracting Eq. (10) from Eq. (11), we have the following

well-known Cam-clay yield function:

f ðp0; qÞ ¼ MD ln
p0

p00
þ D

q
p0
þ
Z t

0
Jtr Dp ds ¼ 0 ð12Þ

The rate type of constitutive equation for the Cam-clay model can
be written as

T
�
0 ¼ eK � 2

3
eG� �
ðtr DÞI þ 2eGD�

eG
~s S� eK �bI

� � eG
~s S � D� eK �bðtr DÞ

� �
eG þ eK �b2 þ h

ð13Þ
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Fig. 1. Shape of the weight function.

Table 1
Order of the interpolation function in FEM.

Number 0�1 1�1 1�2 2�2

Order Pressure 0 1 1 2
Displacement 1 1 2 2

: Pressure

: Displacement
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where

eK ¼ 1þ e
~j

p0; eG ¼ 3ð1� 2mÞ
2ð1þ mÞ

eK ; �b ¼ 1ffiffiffi
3
p M � q

p0

� �
;

�s ¼ qffiffiffi
3
p ; h ¼ Jp0�bffiffiffi

3
p

D

2.3. Moving least squares approximant

In this study, the element-free Galerkin method (EFG method) is
adopted. In the EFG Method, the interpolation functions are de-
rived by the moving least squares approximant. In the moving least
squares technique, approximation uh(x) is expressed as

uhðxÞ ¼ pTðxÞaðxÞ ð14Þ

where p(x) is a complete polynomial basis of the arbitrary order and
a(x) are coefficients which are functions of space coordinates
xT = [x,y]. A linear polynomial basis is adopted for all the calcula-
tions, namely,
Fig. 2. Background cell and
pTðxÞ½1; x; y� ð15Þ

Moving least squares interpolant uh(x) is defined in the circle of the
domain influence, referred to as the support. In order to determine
the form for a(x), weighted discrete error norm J(x) is constructed
and minimized.

JðxÞ ¼
Xn

I¼1

wIðxÞ pTðxIÞaðxÞ � uI
� �2 ð16Þ

where wI(x) = w(x � xI) is a weight function, n is the number of
nodes within the circle, and uI is the nodal value of u at x = xI. The
minimization condition requires

@J
@a
¼ 0 ð17Þ

which results in the following linear equation system:

AðxÞaðxÞ ¼ BðxÞuT ð18Þ

where
radius of the support.



Fig. 3. Rearrangement and allocation of background cells to cover the changing domain.

Define the background cells and determine the Gauss points within the domain and also along the 

boundary. 

Compute the interpolation function and its derivative and assemble the stiffness matrices. 

Integrate along the boundary to evaluate the natural boundary conditions. 

Solve the stiffness equation. 

The interpolation functions at the nodal points are computed by the stresses at the Gauss points 

within the domain. The stresses at the nodal points are computed by the interpolation functions 

and store the stresses. At the same time, the coordinates are renewed. 

The stresses at the Gauss points are computed by the stresses at the nodal points again. The 

stiffness matrices at the next step are given by the stresses at the Gauss points. 

Fig. 4. Numerical implementation of the stresses.
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AðxÞ ¼
Xn

I¼1

wIðxÞpðxIÞpTðxIÞ;

BðxÞ ¼ ½w1ðxÞpðx1Þ;w2ðxÞpðx2Þ; . . . ;wnðxÞpðxnÞ�;
uT ¼ ½u1;u2; . . . ;un�:

Solving the above equation for a(x), we obtain

aðxÞ ¼ A�1ðxÞBðxÞuT ð19Þ

Substituting the above equation back into Eq. (14) leads to

uhðxÞ ¼ pTðxÞA�1ðxÞBðxÞuT � NðxÞuT ð20Þ

where N(x) is the interpolation function. The weight function used
in this study is the quartic spline presented in Fig. 1. It strictly
shows the functions of d = jx � xIj in multiple dimensions as
follows:

Quartic spline weight function

wðdÞ ¼ 1� 6
d

dm

� �2

þ 8
d

dm

� �3

� 3
d

dm

� �4

; 0 6 d 6 dm

wðdÞ ¼ 0; d > dm ð21Þ

where dm is the radius of the support of w(d). Note that the weight
function and the first derivatives of its function are continuous at
every point, as shown in Fig. 1.
2.4. Setup of the stiffness equation

A set of the weak forms of the previous governing equations is
discretized within the framework of EFG Method using the MLS
approximated interpolation functions under the Cam-clay model.
The principle of virtual work, through consideration of the bound-
ary conditions, is given as
Z
V

div _St � dv dV þ
Z

Cu

qðv � �vÞ � dv dS ¼ 0 ð22Þ

�
Z

V
ðtr DÞdhwdV þ

Z
V

vw � graddhwdV �
Z

Cq

�qdhwdS�Z
Ch

bðpw � �pwÞdhwdS ¼ 0 ð23Þ
where q and b are Lagrange multipliers and d is the variational
operator. Eqs. (22) and (23) express the equilibrium and the conti-
nuity of the pore water, respectively. The second term on the left
side of Eq. (22) and the fourth term on the left side of Eq. (23) are
the boundary conditions.

Here, the displacement rate and the head of the pore water are
expressed as follows using the interpolation function of EFG:



Fig. 5. Summary of the formulation.
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v ¼ N1 0 � � � Na 0
0 N1 � � � 0 Na

" # v�1x

v�1y

..

.

v�ax

v�ay

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ ½N�fv�g ð24Þ

hw ¼
pw

cw
þX ¼ N1

h � � � Nb
h

h i h�1

..

.

h�b

8>><>>:
9>>=>>; ¼ ½Nh�fh�g ð25Þ
where [N] and [Nh] are called the shape matrices, X is the potential
head, cw is the unit weight, {v�} is the velocity and {h�} is the total
head at the nodal point.

Next, the following form is obtained as the stiffness equation:
ð½K� þ ½K 0�ÞfDu�g � ½Kv �Tfh�jtþDtg

¼ fDFg � ½Kv �Tfh�jtg þ fDqg ð26Þ
where
½K� ¼
Z

V
ð½B�T ½C�½B� þ ½B�TfT 0g½Bv � � 2½B�T ½T���½B� þ ½M�T ½T����½M�

� ½Bv �T pw½Bv � þ ½M�T ½P�½M� þ ½Bv �Tcw½N
0�ÞdV

½K 0� ¼ q
Z

Cu

½N�T ½N�dS; ½Kv � ¼
Z

V
½Nh�T ½Nh�dV ;

fDFg ¼ Dt
Z

Cr

½N�Tf�_stgdS; fDqg ¼ q
Z

Cu

½N�Tf�vgdS;



(b) Initial collocation of the nodal points (a) Geometry and boundary conditions 

Fig. 6. Description of the problem for the saturated column test.

Table 2
Material parameters.

Compression index k 0.11
Swelling index j 0.04
Critical state parameter M 1.42
Poisson’s ratio m 0.333
Initial void ratio e0 0.83
Initial volume ratio v0 = 1 + e0 1.83
Initial consolidation stress (kPa) p00 294
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½T���¼
T 011 0 T 012=2
0 T 022 T 012=2

T 012=2 T 012=2 T 011þT 022

� �
=4

264
375; ½T����¼

T 011 0 T 012 0
0 T 022 0 T 012

T 012 0 T 011 0
0 T 012 0 T 022

26664
37775;

2 3

½B� ¼

@N1

@x 0 � � � @Na

@x 0

0 @N1

@y � � � 0 @Na

@y

@N1

@y
@N1

@x � � � @Na

@y
@Na

@x

6664 7775;
½C� ¼ ½C1� � ½C2�; ½C1� ¼
aþ b a 0

aþ b 0
sym: b=2

264
375;

½C2� ¼
1
e

ðcS11 � dÞ2 ðcS11 � dÞðcS22 � dÞ cS12ðcS11 � dÞ
ðcS22 � dÞ2 cS12ðcS22 � dÞ

sym: ðcS12Þ2

264
375;

a ¼ eK � 2
3
eG; b ¼ 2eG; c ¼

eG
�s
; d ¼ eK �b; e ¼ eG þ eK �b2 þ h;
½Bv � ¼ @N1

@x
@N1

@y � � � @Na

@x
@Na

@y

h i
;

½M� ¼

@N1

@x 0 � � � @Na

@x 0

0 @N1

@y � � � 0 @Na

@y

@N1

@x 0 � � � @Na

@x 0

0 @N1

@y � � � 0 @Na

@y

2666664

3777775;
½P� ¼

pw 0 0 0
0 pw 0 0
0 0 0 pw

0 0 pw 0

26664
37775; fT 0g ¼

T 011

T 022

T 012

8><>:
9>=>;;

fv�g ¼ fDu�g=Dt; f�vg ¼ fD�ug=Dt; ½N0� ¼ ½0 N1 � � � 0 Na �

where Dt is the time interval, D�u is the boundary value of the dis-
placement, and [C] is the constitutive stiffness matrix correspond-
ing to Eq. (26). The weak form of the continuity for pore water is
discretized by approximating the pore water pressure. The stiffness
equation is described as

�½Kv �fDu�g � ð1� hÞDt ½Kh� þ K 0h
� �� �

fh�jtþDtg
¼ fDQg þ hDt½Kh�fh�jtg � fDbg ð27Þ

where

½Kv � ¼
Z

V
½Nh�T ½Bv �dV ; ½Kh� ¼

Z
V
½Bh�T ½k�½Bh�dV ; ð28Þ

K 0h
� �

¼ b
Z

Ch

½Nh�T ½Nh�dS; ð29Þ

fDQg ¼ Dt
Z

Cq

½Nh�T �qdS; fDbg ¼ bDt
Z

Ch

½Nh�T �hwdS; ð30Þ

½k� ¼
k=cw 0

0 k=cw

" #
; ½Bh� ¼

@N1
h

@x
� � � @Nb

h

@x

@N1
h

@y
� � � @Nb

h

@y

266664
377775 ð31Þ

where h is the parameter of difference.

2.5. The stabilization term

As previously mentioned, mixed displacement-pressure formu-
lations (e.g., finite element methods) produce locking phenomena



(a) Regular distribution (b) Irregular distribution 

Fig. 8. Initial collocation of the nodal points.
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Fig. 7. Numerical results.
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in the pressure field unless a stabilization technique is used. The
remedy for such numerical instability has generally been to adopt
a higher interpolation order for the displacements than for the pore
pressure. As an alternative, however, an added stabilization term is
incorporated.
It is shown in this study that the instability can be eliminated by
adding the stabilization term which consists of the square of the
pore water pressure of the first derivatives. The stabilization term
is obtained by the shock capturing term using the Galerkin Least-
Squares method for the continuity condition.

�
Z

V
ðtrDÞdhdV þ

Z
V

vw � graddhdV �
Z

Cq

�qdhdS

�
Z

Ch

bðpw � �pwÞdhdSþ d
Z

V
a p0w
� �2dV ¼ 0 ð32Þ



Fig. 10. Description of the problem.
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where a is the stabilization parameter, p0w is the differentiate pw

with respect to x and z, and x is horizontal axis and z is vertical axis.
We express the total head field as

h ¼ N1
h � � �N

b
h

h i h�1

..

.

h�b

8>><>>:
9>>=>>; ¼ ½Nh�fh�g ð33Þ

Differentiating matrix [Nh], we obtain matrix [B0] as

½B0� ¼
@N1

h
@x � � �

@Nb
h

@x

@N1
h

@z � � �
@Nb

h
@z

24 35 ð34Þ

Substituting Eqs. (33) and (34) into the stabilization term, stabiliza-
tion matrix [KS] is shown as

½KS� ¼ a
Z

V
½B0�T pw½B

0�dV ð35Þ

In this study, the soil column test created by Zienkiewicz et al. [27]
is performed in order to examine the numerical stability of this pro-
cedure, and the values for the pore water pressure are illustrated
along the vertical axis of the soil column. The two advantages of this
stabilization procedure are as follows: (1) The interpolation order
for the pore pressure is the same as that for the displacements,
namely, a lower interpolation order is not adopted for the pore
pressure. Therefore, the interpolation functions in the pore pressure
field do not reduce the accuracy of the numerical results. (2) Table 1
summarizes the order of the interpolation functions for the pres-
sure field and for the displacement field in FEM. The first derivatives
of the interpolation functions in the pore pressure field are the zero
order or the first order, as shown Table 1. Therefore, accuracy in the
numerical results cannot be obtained. With EFG Method, however,
the interpolation functions are derived by the MLS approximant
and a linear-based polynomial is used, in other words, the resultant
interpolation functions are smooth. Moreover, when the distance
between nodes tends to be zero, p0w also tends to be zero.

Thus, the stabilization term, d
R

V a p0w
� �2dV , also tends to be zero.

The weak forms are integrated using the MLS interpolation func-
tion in space and the explicit time scheme in time. In order to ob-
tain the integrals, background cells which are independent of the
nodes are used, as shown in Fig. 2. In the manipulation of the stiff-
ness matrix, a numerical integration is performed at the Gaussian
points on the background cells. The interpolation function is calcu-
lated by the nodes in the domain. The background cells, which
intersect or contact the boundary, are divided into four finer cells.
The cells are then rearranged during the computation, according to
changes in the domain, as shown in Fig. 3. In finite element meth-
od, the integration mesh is the same as the element mesh. In EFG,
however, the background cell is required only in performing the
integration of computing the stiffness matrix.

It is also necessary that, during the time evolution, the stress
history is temporarily stored at the nodal points by transferring
the stresses at the integration points through the interpolation
function after evaluating the current stress state to construct the
stiffness matrix, because the coordinates of the integration points
are renewed along with the rearrangement of the background cells.
Euler scheme is adopted for the stress update algorithms.

The curved boundary is dealt with in the similar manner for the
normal boundary. Specifically, the background cells are divided
into four finer cells, and the cells are rearranged during the compu-
tation, according to changes in the domain.

Herein, we describe the numerical implementation. First, the
initial geometrical dimensions and the material properties of the
domain with an allocation of the nodal points are defined. The ini-
tial displacements, the initial pore pressures at the nodal points,
and the stress levels at the Gauss points, are set. Second, the back-
ground cells, the Gauss points and the boundary are determined.
Here, the effective stress is resumed by the computation of the
interpolation function and its derivative. The stiffness matrices
are evaluated and assembled. After integration along the boundary,
the stiffness equation is solved. Finally, the coordinates are re-
newed and the stresses at the nodal points are stored (see Fig. 4).
Here, resultant stiffness equations are summarized in Fig. 5.
3. Numerical examples

3.1. The saturated soil column test

For soil-water coupled problems, numerical instabilities are of-
ten encountered at the initial stage under undrained conditions
unless a stabilization technique is performed. In this chapter, the
numerical stability of an EFG computation is examined using the
proposed stabilization term described in the last chapter. The body
force is not considered in either the current or subsequent
analyses.

Let’s consider the 1D problem analyzed by Zienkiewicz et al.
[27] in which the saturated soil column test in Fig. 6a uses the
material parameters listed in Table 2. Here, a clay permeability of
1.0 � 10�7 cm/s is employed. A model discretized by 62 nodal
points is adopted, as shown in Fig. 6b. Linear-based polynomials
are applied for the interpolation functions of the EFG Method.
The functions have the same order for both the displacements
and the pore pressure. The weight function is a quartic spline type
of weight function and its radius of support is 1.0. Here, 5 � 5
Gaussian points are used. The background cells are 1.0 m within
the domain and 0.5 m outside of the domain. The scale factor,
which is defined as the magnification of the support diameter to
the side length of the square background cell, is 1.5. This study em-
ploys penalty methods to apply the boundary conditions, and the
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Fig. 11. Numerical results without stabilization term.
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value of the penalty factor is 1.0 � 106. In order to solve the stiff-
ness equation, the forward difference is adopted.

Fig. 7a shows the effect of the proposed stabilization term and
dimensionless parameter a in the numerical profile of the pore
pressure just after loading under undrained conditions, for which
a time difference of Dt = 0.01 and a value of permeability of k =
1.0 � 10�7 cm/s are adopted. There are 62 nodal points and the
weight function is a quartic spline. The double circle line is the re-
sult analyzed by finite element method using the lower order
interpolation function for the pore water pressure. From Fig. 7a,
it can be concluded that the numerical solution has been improved
in the case where the value of the dimensionless parameter is 0.01.
In subsequent examinations, a permeability of 1.0 � 10�7 cm/s
and a time difference of 0.01 are adopted.
The next examples we will consider are the effect of others con-
ditions. Fig. 7b explains the effect of the scale factor. The values for
the scale factor SF of 1.1 and 1.5 are adopted. Very good improve-
ment of the results with the stabilization term is obtained. Fig. 7c
shows the effect of the weight function. The quartic spline function
and exponential function are employed as the weight function.
From Fig. 7c, it can be seen from the figures that the numerical
solution has been improved in any cases. The results for the effect
of the nodal density can be seen in Fig. 7d. The total nodes of 62
and 88 are used. Again, good results for both nodes are observed.
Results for the effect of the integration scheme are presented in
Fig. 7e. The circle lines and the triangle lines show the results using
reduced integration scheme and full integration scheme, respec-
tively. It can be observed that the spurious pressure modes do
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Fig. 12. Numerical results with stabilization term.
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not occur if the stabilization term is considered. Next, two node
distributions are shown in Fig. 8. The regular distribution and
irregular distribution have 92 nodes. Fig. 9 shows the effect of
irregularity on the nodal arrangement. The results of using the sta-
bilization procedure are good in the cases.

Here, the numerical instability is caused by the large difference
in the value of the stiffness matrix between the displacements and
the pore water pressures. Generally, the values of the stiffness ma-
trix for the pore water pressure are smaller than those for the dis-
placements. However, if the lower order interpolation function in
the pore water pressures is adopted, the values of the stiffness ma-
trix for the pore water pressures become large, so that the differ-
ence in the values of the stiffness matrix becomes small.
Similarly, if the stabilization term is considered, the values of the
stiffness matrix in the pore water pressure also become large.
Therefore, the stabilization term using the forward difference
quells the anomalous pore pressure behavior because of the small
difference. However, EFG takes more calculation time compared
with the finite element method because of the difference of the cal-
culation procedure in the interpolation functions.

3.2. Foundation problem subjected to strip loading

In order to examine the numerical availability of the stabiliza-
tion procedure to EFG Method, a 2D soil-water coupled problem
is solved in relation to a soft soil foundation. The geometry and
the boundary conditions are given in Fig. 10a, while the initial col-
location of the nodal points is shown in Fig. 10b. Vertical displace-
ments are applied at the top face to simulate loading on the
foundation, while the transverse direction is restrained. Thus, the



(a) Geometry and boundary conditions

(b) Initial collocation of the nodal points 

Fig. 13. Description of the problem #2.
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boundary conditions under the loading surface are given by the
settlements, and the other locations on the upper boundary are
stress free. The bottom boundary is fixed in all directions, while
the side boundaries are fixed in only the horizontal direction, such
that vertical displacement is allowed. Hydrostatic pressure is used
here for the initial conditions in the pore pressure field. The model
is generated with 1326 nodal points, in other words, 26 vertical no-
dal points and 51 horizontal nodal points. The background cells are
0.2 m in size, and the value of dimensionless parameter a is the
same as in the previous analysis. Figs. 11 and 12 present the
numerical results without and with the stabilization term, respec-
tively, in which (a), (b), (c), and (d) show the contours of the pore
water pressure, the contours of the normalized strain, the displace-
ment distributions, and the collocation of the nodal points, respec-
tively. In these results, the settlements under the loading surface
are 0.04 m in Fig. 11 and 0.4 m in Fig. 12, respectively. The normal-
ized strain measure is given as

kek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðeeTÞ

q
ð36Þ

where e ¼
R t

0 Ddt [28].
Spurious oscillations arise in the pore pressure field, as can be

seen in Fig. 11a. In contrast to the results using the stabilization
procedure, high values are obtained for the pore pressure and for
the normalized strain in Fig. 11a and b, respectively. In particular,
anomalous behavior appears on the left side in these figures. More-
over, the directions of the displacement vectors are disorderly in
Fig. 11c because of the interaction between the pore pressure field
and the displacement field. If a stabilization technique is used,
however, no oscillations appear in the solution, as observed in
Fig. 12. Fig. 12a accurately displays the rise in pore water pressure
below the loading surface. In Fig. 12b, the prominently localized
zones of the normalized strain occur just beneath the edge of the
loading surface. The deformed pattern in Fig. 12c is very similar
to the classical slip line solution obtained by Prandtl. The shear
bands are recognized as the localized deformation.

In order to consider the influence of the boundary for the failure
surface, another model for the foundation problem is solved. The
geometry and the boundary conditions are given in Fig. 13a and
b. The width and the height of the model are 1.5 times the length
of the original model and the material parameters are the same as
those of the original model. Fig. 14a–d present the numerical re-
sults. The results concerning the failure surface are similar to the
original results; therefore, the domain in the original computa-
tional model is suitable.

Fig. 15 compares the EFG solution with Prandtl’s solution. Pra-
ndtl’s solution qf is expressed as

qf ¼ 5:14cu ð37Þ

where cu is the undrained shear strength.
Here, we briefly describe the undrained shear strength for the

Cam-clay model [29]. The volume change of clay under undrained
condition is expressed as follows

ev ¼
~k

1þ e0
ln

p0

p00
þ D

q
p0
¼ 0 ð38Þ

The failure condition is written as

M � q
p0
¼

~k� ~j
Dð1þ eÞ �

q
p0
¼ 0 ð39Þ

Substituting Eq. (38) into (39) gives

q
p0
¼ M

q
p00
¼ M exp �

~k� ~j
~k

 !
ð40Þ

Since the undrained shear strength is the half of the second invari-
ant of deviatoric stress, we can obtain as

cu

p00
¼ M

2
exp �

~k� ~j
~k

 !
ð41Þ

From this figure, it is revealed that the EFG solution approaches Pra-
ndtl’s solution, namely, the numerical result provides a reasonable
solution profile. This result shows that the EFG method with the
stabilizing procedure is capable of solving problems of computa-
tional geomechanics.
4. Conclusion

In this paper, we have proposed a stabilization method for soil-
water coupled problems using the Element-free Galerkin Method.
A stabilization term has been presented by the addition of a conti-
nuity condition. The proposed stabilization procedure has the fol-
lowing two characteristics: (1) The interpolation order for the
pore pressure field is the same as that for the displacements, in
other words, a lower interpolation order for the pore pressure is
not adopted. (2) The stabilization term consists of first derivatives
in which the interpolation functions are smooth because of the
MLS approximation. The saturated column test and the foundation
loading problem have been solved using the stabilization proce-
dure. Numerical examples have shown that the stabilization meth-
od can indeed quell the anomalous pore pressure behavior.
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Fig. 14. Numerical results with stabilization term #2.
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