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Abstract

_ Data assimilation is a versatile methodology, developed in the earth sciences, such as geophysics, meteorology, and oceanography, for
estimating the state of a dynamic system of interest by merging sparse observation data into a numerical model for the system. In
particular, the data assimilation method referred to as the particle filter (PF) can be applied to nonlinear and non-Gaussian problerns,
and it holds the greatest potential for application to geotechnical problems. The objective of this study is to demonstrate the theoretical
and the practical effectiveness of the PF for a geotechnical problem, i.e., applying the methodology to numerical experiments and actual
madel tests to identify the parameters of elasto-plastic geomaterials. Since the mechanical behavior of soils depends on both the current
stress and the recent stress history of the soil, the sampling method called SIS, which can take into account the stress history experienced
by soils, identifies the parameters of elasto-plastic geomaterials remarkably well. The results of the numerical tests have shown that the
parameters identified by the PF based on the SIS have converged into their true values, and the approach presented in this study has shown
great promise as an accurate parameter identification method for elasto-plastic geomaterials. Moreover, the simulation results using the
identified parameters were close to the actual measurement data, and long-term predictions with high accuracy could be achieved, even
though short-term measurement data were used. The PF approach produces more information about the parameters of interest than simple
estimated values obtained from optimization ‘methods. Namely, the identification comes in the form of probability density functions.
© 2012 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Prediction has always played a significant role in nearly
every aspect of construction projects for geotechnical infra-
structures. Geotechnical engineers, however, have to do more
than make predictions: they are responsible for deciding the
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hosting by Elsevier B.V. All rights reserved. predictions in order to realize maximum economy and safety
T assurance. The development of the computer has greatly
Peor review under responsibility of The Japanese Geotechnical Society improved prediction capabilities, since it allows enormous
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. numerical simulations for making predictions in geotechnical
Production and hosting by Elsevier engineering for such works as shallow/deep foundations,
tunnels, cut slopes, and road/railway embankments.
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In spite of the great number of discussions and research
works, discrepancies between the predictions made using
sophisticated simulation techniques and the observation
data continue to exist (e.g., Brand and Premchitt, 1989).
Laboratory or in situ tests can be used to obtain the soil
parameters required for the various predictive methods. In
practice, however, obtaining accurate parameters is 2
difficult task because of the many sources of uncertainty
in geotechnical analyses. To make matters worse, soils,
which are products of natural processes, are highly vari-
able and display very complex behavior. Consequently,
geotechnical engineers must make decisions based on
incomplete information.

To cope with the above uncertainties, inverse analysis
techniques have been proposed and applied to geotechnical
problems for the past three decades. These techniques are
used more and more frequently in geotechnical practices,
e.g., tunnel excavations in rock (Sakurai and Takeuchi,
1983; Karakus and Fowell, 2005), embankments on soft
grounds (Asaoka, 1978; Arai et al,, 1984, 1986, 1987,
Murakami and Hasegawa, 1987; Nishimura et al., 2002,
2005), single-pile settlement (e.g., Honjo et al., 1993), and
excavations with support systems (Finno and Calvello,
2005; Rechae et al, 2008). Gioda and Sakurai (1987)
reviewed some developments of the numerical techniques
for inverse analysis in the field of geomechanics over the
past few decades.

Inverse analyses have been successfully applied to linear
elastic problems in which the deformation to be addressed
is linear and depends only on the model parameters and
the applied load; it does not depend on the loading history.
However, the mechanical behavior of geomaterials is
commonly described by an elasto-plastic model, and recent
sophisticated comstitutive models for soils have been
formulated on the basis of the elasto-plastic theory (e.g.,
Asaoka et al., 2002; Nakai and Hinokio, 2004). The
deformation behavior of elasto-plastic geomaterials dis-
plays strong nonlinearity and depends not only on the
values of the parameters, but also to a great extent on the
stress state and the history, whereby the parameter
identification of elasto-plastic models still remains a major
challenge.

Data assimilation (DA) is available as a methodology to
overcome the above difficulties (Nakamura et al., 2005).
The estimation of the interest dynamic system via DA
involves a combination of observation data and the under-
lying dynamical principles governing the system. The
melding of data and dynamics has produced a powerful
methodology which makes efficient and realistic estima-
tions possible. This approach has recently proven fruitful
in the earth sciences, e.g., geophysics, meteorology, and
oceanography (e.g., Awaji et al., 2009). The discipline of
geotechnical engincering is no exception; the concept of
DA has been given much attention, and has been applied
to some geotechnical problems since the 1980s. A pioneer-
ing work of DA strategy in geomechanics includes the
fiterature of Murakami and Hasegawa (1985) and

Murakami (1991), who applied the Kalman filter (KF)
and the extended Kalman filter (EKF), which assimilate
observation data into simulation models, to identify and
gstimate problems in geomechanics.

Several kinds of powerful DA methods, such as 4D-
VAR (Talagrand and Courtier, 1937), the representer
method (Bennett, 1992, 2002), and the ensemble Kalman
filter method (EnKF) (Evensen, 1994), have been pro-
posed. Among the existing strategies, this study focuses on
the filtering techniques referred to as the PF (Gordon
et al., 1993; Kitagawa, 1996; Higuchi, 2005). The PF can
be applied to nonlinear and non-Gaussian problems and
can provide a simple conceptual formulation and ease of
implementation. It has been used extensively in ocean and
atmospheric science, oil reservoir simulations, and hydro-
logical modeling (e.g., Nakamura et al., 2006; Nakano
et al., 2007; Awaji et al., 2009). Clearly; the PF holds the
greatest potential for application in geotechnical engineer-
ing, and existing technical issues in geomechanics can be
overcome through its use.

The objective of this study is to demonstrate the
theoretical and practical effectiveness of the DA method,
ie., the PF, for the parameter identification of elasto-
plastic models, by applying the methodology to numerical
experiments and actual model tests. First, an overview of
the concepts and methods of data assimilation is presented,
and the potential of the PF for use in geomechanics is
discussed, with its formulation and algorithm explained.
Then, the PF is applied to numerical tests, where material
parameters of the elasto-plastic geomaterial, i.e., the Cam-
clay model, are identified by simulating the shear behavior
of soil elements under undrained or drained conditions,
and the suitability of the PF is examined. Tinally, an
application example of the PF to an actual model test is
shown, and its practical capability is discussed. The
deformational behavior of a clay block sample, partially
loaded, is simulated by a finite element analysis with the
Cam-clay model, for which the elasto-plastic parameters
are identified using the PF, Then, whether or not the finite
element analyses using the identified parameters produce
accurate simulations is investigated.

2. DA using the PF
2.1. Concepts and methods of DA

DA is a versatile methodology for estimating the state of
a dynamic system of interest by merging sparse observa-
tion data into a numerical model for the system. The state
of the system is usually estimated with deterministic
simulation models, which are subject to the uncertainty
that arises due to a lack of knowledge and a poor
understanding of the physical phenomena. Meanwhile,
observation data, which represent the true state but are
subject to stochastic uncertainty and randomness, may
occasionally be available as a function of a subset of the
system variables. Based upon a prognostic model and 2
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limited number of observations, DA attempts to provide a
more comprehensive system analysis which may lead to
more accurate predictions.

DA ‘methods can be split into two different categories,
according fo the way the updating is done with regard to
time:

1) Variational data assimilation: Past observations, from
the start of the modeling until the present time, are used
simultaneously to correct the initial conditions of the
model and to obtain the best overall fit of the state to the
observations. The concept of variational data assimila-
tion methods is shown in Fig. 1. The methods minimize
the squared distance between the analysis and the
background state at the beginning of the assimilation,
and between observations (symbols) and the forecast run
(the continuous lines) throughout the assimilation.

2) Sequential data assimilation: Observations are used as
soon as they are available to correct the present state of
the model. The concept is illustrated in Fig. 2. In
contrast to variational methods, sequential methods
lead to discontinuities in the time series of the corrected
state. When an observation becomes available, the
model forecast (continuous line) is updated to a value
closer to the observation (symbol) that is used to make
the next model forecast.

Variational DA methods include 4D-VAR (e.g., Talagrand
and Courtier, 1987) and the representer method (Bennett,
1992, 2002). In particular, 4D-VAR is a novel technique,
which has recently been applied to weather forecasts (e.g.,

o; Initial condition
©: Observation

Eror Contro! of initial conditions by measuring distance
covariance betwesn observations and model trajectory
L 1 1 1
1) N 1) T T
ot
Fig. 1. Concept of variational data assimilation.
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A

Increasing model error

Observation error

Fig. 2. Concept of sequential data assimilation.

Yumimoto, 2009). On the other hand, sequential DA
methods include the KF (Kalman, 1960), the EKF
(Katayama, 1983), the EnKF (Evensen, 1994), and the PF
(Gordon et al., 1993; Kitagawa, 1996). The KF and the
EKF, which is a nonlinear version of the KF, are well-known
DA techniques; they have been used not only in earth
science, but also in  geotechmical engineering (e.g.,
Murakami and Hasegawa, 1985, 1993; Suzuki and Ishii,
1994). The EnXF and the PF are based on the Monte Carlo
approach to approximating the state probability distribution
by a finite number of independent model trajectories, also
called particles or realizations. Both methods, therefore, are
called ensemble-based filters. '

This study focuses on the PF and applies it to parameter
identification problems in geomechanics. The sequential
approach produces more information about the para-
meters of interest than simple estimated values obtained
from a variational DA method, namely, the identification
comes in the form of probability density functions (PDFs).
As noted above, novel sequential DA methods include the
EnKF and the PF. Alihough the EnKF can be applied to
nonlinear systems, it basically assumes a linear relationship
between a state and the observation data in calculating a
Kalman gain. Therefore, the EnKF cannot produce satis-
factory estimates if its linear approximation is invalid. This
means that its application to geomaterials is difficult,
because the materials display strong nonlinearity. On the
other hand, as the PF does not require assumptions of
linearity or Gaussianity, it is applicable to general .pro-
blems. In addition, the PF uses the recursive formula of the
sequential Bayesian framework directly and approximates
the posterior probability distributions by means of appro-
priate weights associated with each realization. In contrast
to the EnKF, the PT makes no assumptions regarding the
formula for the prior distribution of the model state; as
such, convergence to the true state is ensured for a
sufficiently large ensemble size. Therefore, the PF has high
potential for application to geotechnical engineering and
can achieve fruitful outcomes. This section provides a
thorough description of the PF.

2.2. Nonlinear non-Gaussian state space model and state
estimation

We consider a nonlinear and non-Gaussian state space
model, which is represented in the following (Kitagawa,
1987):

Xe = fe(Xe—1)+ 2 _ )]

V1= h(x:)-+-w, (2)

where x,=(x1, X2, ..., x) and y,={n, ¥2, ..., ¥;) represent
the state vector and the observation vector, respectively,
and subscripts k and / are the dimension of state vectors
and observation vectors, respectively; f, and h, are the
nonlinear dynamic model operator and the observation
operator, respectively. Subscript ¢ denotes the discrete time
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index. Vectors v, and w, refer to the system error vector
and the observation error vector, respectively, whose PDF
follows the normal distribution with zero mean, namely

v, ~ NI (0, Qt) (3)
wy ~ N(0, Ry 4

where @, and R, are predetermined covariance matrices.
This study focuses on the mechanical behavior of
geomaterials, which can be described by soil-water
coupled finite element techniques. By means of the for-
mulation of the soil-water coupled FEM, Eq. (1) can be
rewritten in the following form:
w) _[ur) [T
| |2 [Ky] —OALK;]
(F}+IK) e o
- +{ ®
{O} -+ (1-O)[Kip: '

where the following notations are employed: [K] is the
tangent stiffness matrix of the soil skeleton which is
modeled by constitutive models for soils, [K,] is the
rectangular matrix that transforms the increment in nodal
displacements to the volume change of each element, [K,]”
is the transpose of [K,] that transforms the pore pressure of
an element to the seepage force of element, [Kj] is the fluid
stiffness matrix, {F} is a vector that represents the incre-
ment in applied force, {#,} is the nodal displacement vector
at time ¢, {p,} is the nodal pore pressure vector at time ¢, 8
is the time-varying coefficient, (0 < 8 < 1), {0} is the vector
that represents the increment in the volume rate of the
water flow, {t¥} is the system error vector for {w}, {¢]} is
the system error vector for {p}.
Thus, state vector x, is constructed as

_ U . 6
= b : ©)

If state variables u;, u, and uy in {u} are directly
observed, nonlinear function A, can be written in matrix
form as

-1

1 0 0 0
H=10 110 - 0 (7)
00 1 0

We can describe y, = H;x, using the above matrix.
The recursive formula for obtaining a one-step-ahead
prediction and filtering densities can be derived as follows:

One-step-ahead prediction (time update)

PO y1a-1) = /

o0

(e, X, [ylzt—l)dxr—l
00

[o0]
= f POt Xt Y1 P emt [ Y1)y
OQ

= f ” PO | Xem )P(em1 | Y1:e—1)dXe1 ®

Filtering (observation update)

P(xtaytb’l:r—l) _ P(J’:|xr=y1:t—1)'P(xr|Y1:z—1)
pe|yit) POe|y1em)

_ P(ytlxr) 'P(xz|y1:r—1)

o pOeye)

where p(x,|x,ﬁ[) is the density of x; given previous state
vector x,_g, p(ytlx[) is the density of y, given x;, and
p(ytlym—;) is obtained by fP(ytlxt)P(xrly[:r—l)dx:- _
In practice, computing Eqs. (8) and (9) is difficult,
because analytical solutions are available in only a few
stylized cases, which include the linear and the Gaussian
models. In the Gaussian case, the KF provides determi-
nistic updating recursions. Therefore, in both nonlinear
and non-Gaussian cases, numerical techniques such as the
PF must be employed. :

pixe|yi) =

©)

23 PF

The PF approximates PDFs via a set of realizations
called an ensemble that has weights, and each realization is
referred to as a ‘particle’ or a ‘sample’. For example, a
filtered distribution at time t— 1, p(x,..1 | Pl—1), Where pr_;
denotes {y1,¥2,...,7—1}, 18 approximated with ensemble

(1) 2 ™ : @ Q)
{xr—1|z—1=xr—1|:—1"“=’_C:—1|r—1} and weights {w,” . w",...,

wﬂ} by the following equation:

g ;
Py~ D w82, ) (10)
i=1

where N is the number of particles and § is the Dirac delta

5‘2 | is the weight attached to particles x£?1| 1

and should suffice W$?1 >0 and Zf‘;l wS?l = 1. Given the
particle approximation, Eqs. (8) and (9) become a sum
instead of an integral.

We obtain the ensemble approximation for the forecast
distribution p(x, | Y1—1) at time ¢ from the Eqgs. (8) and (10)
by the following calculation:

function, w

[+
plxe|y1) = f x| xe- )Pt | Pra—1)dx
{v0]

N oo
& Z f w?zlé(x,_l —xE'zl It_l)p()c, |x,_1)dx,_1
=1 /-

N
=D w2 80—, o)

i=1 .

N
=3 w? 15(x,—x§?t_l) 7 (1n
i=1

N .
where, {UE’)},.=1 is an 1.i.d. sample set for Eq..(3). The
calculation means that each particle for the prediction

ensemble, U is obtained by the direct calculation of

}
fe—1°
A2 D).
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On the other hand, we obtain the ensemble approxima-
tion for filtered distribution p(x¢|y1.), from Eqgs. (9) and
(11), and observation y, by the following calculation:

P(Vr]xr) 'P(x:fh:z—l)
P(yt]yl:r—l)
_ P(yr|xr) -p(x; b’[:t—l)
jfooo 67 |3Ct) (X |y1 —1)d%;
PO | x ),
Jp(y‘lxth— )w:—)t :Z: t' it 1
xwg')lé(x,—x?ﬁ_l)

_ Zw(ﬂ 50 6(x‘_xa(‘?r—l)

PG| Y1) =

= Zw%(x,—xgﬂ , (12)
where w ‘{‘j 1s defined as
(@
PO\ X
70 = Y (13)

P67 |x;|:_ w2,

If the observation system is linear, p(y, |x
follows:
1

@ y_
po’!|xz|:—1) - (2 )m/2|R l

~0—H G N R - H,_)
2

_;) is given as

Xexp

(14)

where m is the number of state variables. Each weight w(
is the product of #? and the previous time weight, namely

W = alw?, (15)

2.4. Sampling methods

The central problem in particle filtering is how to sample
from p(x;|y1). A particle filtering algorithm essentially
consists of different ways of sampling. We now discuss a
number of prominent particle filtering algorithms. The
differences between sampling importance resampling (SIR)
and sequential importance sampling (SIS) are shown, and
their applicability to geotechnical problems is discussed.

The classic particle filtering algorithm is known as the
SIR algorithm (Gordon et al., 1993; Kitagawa, 1996). The
algorithm of SIR is summarized as follows:

1. Initialization:
Generate  an
{xgl)s xgz): vy
Set r=1.
2. Prediction:
Each particle xﬁ?l evolves according to the numerical
dynamic mode! given by Eq. (1).

ensemble {set of particles)

xf)N)} from the initial distribution p(xp).

3. Filtering:

After obtaining measurement data y, -calculate
weight w?j, which expresses the “fitness” of the prior
particles to the observation data, and assign a weight,

¥, to each x.

4. Resampling:

Generate new particles {xgl),x?), v X (N)} by resam-

pling N times from the set of particles xt_l, which is

obtained in the filtering stage, where Pr(x(ﬁ (21)=

5’7 and set weight w,ﬁ =1/N. The set of determined

particles {x,)} results in an ensemble approximation of
filtered distribution p(x;]y,,,).
Set t=t¢-1 and go back-to Step 2.

On the other hand, a general approach for filtering is
known as SIS (Doucet et al., 2000; Moral et al., 2006). The
SIS algorithm can be viewed as a generalization of the
SIR algorithm; it is based on using the importance
sampling to estimate the expectations of functions of the
state variables. The algorithm of SIS is summarized as
follows:

1. Initialization:

Generate an ensemble (set of particles) {xgl),x(oz), e

xo M} from the initial distribution plxq).
2. Prediction:

Each particle x | evolves according to the numerical

dynamic model given by Eq. (1).
3. Filtering:

After obtaining measurement data y,, calculate
weight w'?, which expresses the “fitness”
particles to the observation data computed by Eq. (13),
and assign a weight, w?, to each xf?]

4. Weight update:

The set of weighted particles {x; j} results in an
ensemble approximation of filtered distribution p(xtj P1:).
Set t=¢+1 and go back to Step 2.

E}

Fig. 3 shows the two discrete approximations for a PDF
by SIR and SIS.

The question now is which sampling method is prefer-
able for geotechnical problems. Let us focus on the
mechanical behavior of soil herein. Soil undergoes both
elastic and plastic deformation when subjected to loading
and is said to be in the critical state when it undergoes
larger shear deformation at constant volume, constant
shear and normal effective stress conditions (Schofield and
Wroth, 1968). The mechanical behavior can be clearly
described by the critical state constitutive models, e.g., the
Cam-clay model and the Sekiguchi-Ohta model. In the
critical state theory, the state of a soil is described by the
current values of stress parameters ¢ and ps and the specific
volume (l4e€). The consolidation history of soil is
described by the” overconsolidation ratio QCR=p,, /0
where p; is the stress at the infersection of the current
swelling line with the normal consolidation line, as shown

of the prior
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Fig. 4. Cuirent stress and conselidation history (modified from Atkinson
et al., 1990).

in Fig. 4. In many relatively simple theories for stress—
strain behavior, such as the Cam-clay model, the value of
D, defines the size of the state boundary surface which
separates the elastic states inside from the elasto-plastic
states on the boundary surface.

It is well known that the stress—strain response of a soil not
only depends on the current stress, but also on the recent stress
history of the soil (Atkinson et al., 1990). In most current
theories for soils, the stress—strain behavior is taken to depend
principally on the current state and on the consolidation
history defined by the overconsolidation ratio. Problems
mvolving unidirectional stress paths, such as one-dimensional
consolidation, may be described by a simple nonlinear elasto-
plastic model. However, for situations where the stress path
directions may vary due to either the stress history or loading,

a strain-dependent nonlinear elasto-plastic model is desirable.
The magnitude of the effect of the recent history is determined
largely by the difference in the direction of loading between the
current and the previous stress paths. The effect of the stress
history is illustrated in Fig, 5. Samples brought to the same
initial states of g; and p; at zero, and along the different paths
of CO and DO, are then loaded along the same path, OA.
Fig. 5(b) illustrates the stress-strain curves for the same
loading path OA. Soil offers resistance to change in the
direction of loading, which implies that fhe stress—strain
behavior of the current stress path depends on the stress
history. Since the samples had identical states and over-
consolidation ratios at O, and assuming that they were both
held at this state for equal periods of time, the difference in
stiffness is attributable to the difference in stress histories. Soil
offers resistance to change in the direction of loading, which
implies that the stress—sirain behavior of the current stress
path depends on the stress history of the soil.

As noted above, the stress/loading history is an important
factor for evaluating the mechanical behavior of soils. Let us
focus on both of the sampling methods again; the SIR
algorithm cannot take into account the stress history the soils
have experienced since it generates new particles based on the
observation data during the assimilation. On the other hand,
the SIS algorithm keeps the initially generated particles, ie.,
the geotechmical parameters, constant during the entire
process of filtering, and their weights are updated simply
based on the sequentially observed data. This means that the
SIS algorithm can accomplish the task of evaluating of the
mechanical behavior of soils after taking into account the
stress history, and it can produce accurate data assimilation
in geotechnical problems. The algorithms of the PF are
shown in Fig. 6.

a

! State boundary
: surface

£y i

P
b
q
A A
After DO
After CO
[0} ’

s

Fig. 5. Effect of recent stress history on current stiffness (modified from
Atkinson et al., 1990).
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Fig. 6. Algorithms of the PF (modified from Higuchi, 2005). (a) Sampling
Importance Resampling (SIR) algorithm and {b) Sequential Importance
Sampling (SIS) algorithm.

3. Parameter identification of elasto-plastic materials in
numerical tesis

3.1. Setup of the numerical test

Fig. 7 presents a schematic illustration of the experi-
ment. The compression-shear behavior of a 20-cm-square
clayey soil element was simulated by a finite element
analysis, given the incremental load of Ag=1.0 kPa/step
at every calculation step. The original Cam-clay model was
used to describe the elasto-plastic behavior of the soil
element which had the material parameters listed in
Table 1. In the table, v, 4, &, ey, M, af, K, and OCR are
Poisson’s ratio, the compression index, the swelling index,
the initial void ratio, the critical state parameter, the
effective overburden pressure, the coefficient of earth pres-
sure at rest, and the overconsolidation ratio, respectively.

This experiment includes drained and undrained shear
tests under monotonous loading. Fig. 8 shows the effective
stress paths on the ¢—p' plane under undrained/drained
shear. In this figure, the vertical axis indicates the

y (Unit : crm)
A
Appliedload Ag

NN
=1
&
N > X

e e

200

Fig. 7. Schematic illustration of the experiment.

Table 1
Parameters of the soil elements.
v A K ey M oy (kPa) K OCR
0.333 0.225  0.083 1.087 1.103 98.0 1.0 1.0
2.0 T T : T T T
| —: Undrained test
e Drained test
15 ; 4
- A,
_:_f 104+ er.‘:, ]
s /
05k .
0.0 L 1 . i L I X
0.0 0.3 1.0 1.5 20
prlpﬂl

Fig. 8. Effective stress paths of a soil element under undrained/drained shear.

normalized deviatoric stress (g/pf) and the horizontal axis
indicates the normalized effective mean stress (p'/py). The
incremental load of the Ag=1.0 kPa/step was applied to
the soil elements in both tests until the stress paths reached
the critical state line {(CSL) . Calculation steps, 120 and 200
in number, were needed for the undrained and drained
shear tests, respectively. In the undrained tests, the model
boundary was assumed to be impermeable; i.e., no water
was able to flow into or out of the element. The total stress
path in the drained tests, which is equal to the effective
stress path in this case, followed a 1:3 line on the g—p’ plane,
so that the stress path intersected the CSL at ¢/pp=1.7.

T ety
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Fifteen numerical experiments were carried out for both
undrained and drained shear tests and the cases are
summarized in Fable 2. The numerical experiments were
assigned a set of conditions, such as the number of
parameters to’ be identified, the number of particles P,
and error variance ¢°. The parameters to be identified
consisted of some or all of the following, namely 4, x, M,
and pg. The vertical displacement at the top of the element
was used here as the observation data, prepared with the
predetermined true values for the parameters listed in
Table 3. The same error varance ¢2==0.05 (cm?) was
assumed and used in all cases for simplicity. The initial
ensembies for each parameter were sampled from uniform
PDFs, which follow the feasible space listed in Table 4.
These values signify the permissible ranges assigned to the
parameters to be identified. In Table 2, “O” signifies the
target parameters for identification; “-” means the para-
meters were kept equal to their initial values, which are
shown in Table 1.

Table 2
Set of parameters to be identified in undrained/drained shear tests.
Case Parameters to be identified P, o? (em?)
A K M Py
1-1 o - - 100 0.05
1-2 - o} - 100
1-3 - - 0 - 100
1-4 - - - 100
2-1 0 0 - - 400
2-2 6] - O - 400
2.3 0 - - (0] 400
2-4 — 0 0 - 400
2-5 - 0 - o} 400
2-6 - - e} o 400
31 0 0 e} - 1200
32 0 0] - O 1200
33 0 - O O 1200
34 - 0] 0 (0] 1200
4-1 0 0] O o 3600
Table 3
True values of the parameters to be identified.
Parameter True value
i 0.155
K 0.047
M 1.220
7 (kPa) 74.0
Table 4

Feasible space of the soil parameters to be identified.

Parameter Feasible space
A 0.125-0.325
K 0.033-0.133
M 0.803-1.403
P (kPa) 68.0-128.0

3.2. Results and discussion

Figs. 9-16 show the time evolution of the identified
parameters in the undrained and drained shear tests listed
in Table 2. In this paper, the weighted mean values are
referred to as “identified parameters,” and the values are
obiained by

N
¢i= > Wil (16)
i=1

where ¢, and q&g‘) indicate the identified parameter at time
step ¢ and parameter of particle number 7 at time step ¢,
respectively. In these figures, the vertical axis indicates the
identified parameters and the horizontal axis indicates the
calculation steps. We will use the same legend in Figs. 9-
16, where the dotted lines represent the true values and the
symbols represent the identified parameters.

The parameter identification of one unknown parameter
approaches the true values, although the identification starts,
intentionally, with an incorrect ¢, in all cases. These results
verify the effectiveness of the PF for the parameter identifica-
tion of the elasto-plastic model, which presents strong non-
linear behavior. The parameter identification of two or three
unknown parameters also provided high accuracy; however,
identification involving A as the unknown parameters were less
accurate. There are some difficulties in obtaining solutions
with high accuracy in the cases of three or four unknown
parameters under a given number of particles, observations,
and error covariances. The identified parameters at the final
step of the assimilation for the undrained and the drained
shear tests are listed in Tables 5 and 6, respectively.

Fig. 17 compares the simulated results using the identi-
fied parameters of Case 4-1 with the synthetic observation
data used for the identification. It is clear that a combina-
tion of incorrect parameters can produce almost identical
curves. This indicates that a single piece of observation
data may lead to the problem of non-uniqueness. In real
problems, e.g., embankment constructions on soft
grounds, it would be impossible to determine whether the
final predicted values for the settlement and the lateral
displacement are representative or close to the actual
values of the simulated ground. Unlike the finite element
simulation, the actual solutions are not known a priori in
real construction works. This means, in order for the
identification procedure to be useful, the problems with
“ill-posedness,” particularly, “non-uniqueness,” must be
improved so that all the parameters to be identified will
lead to the true values. '

4. Application of the PF to partial loading model tests
4.1. Model test apparatus and procedures
The model test apparatus was manufactured to observe

the deformation of a soil block sample loaded partially
with constant confining pressure through a rubber
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Fig. 9. Parameter identification of one unknown parameter (undrained
test, Case 1).

membrane during the tests, as shown in Fig. 18. The
apparatus consists of a soil container box, a rigid footing,
a loading piston, and several controllers. The front side of
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Fig. 10. Parameter identification of two unknown parameters (undrained
test, Case 2). ’

the container box was made of transparent acrylic plates to
observe the deforming behavior of the soil block. The
inside dimensions of the box were as follows: 26 cm in
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Fig. 11. Parameter identification of three unknown parameters

N Fig. 12. Parameter identification of four unknown parameters (undrained
{undrained test, Case 3).

test, Case 4).

length, 10 cm in width, and 9.5 cm in height. In order to The soil sample was prepared from commercially avail-
minimize the wall friction, the surface inside the box was  able kaolin clay, which has been used extensively in
lubricated with silicone oil. geotechnical model tests, and whose physical properties
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Fig. 13. Parameter identification of one unknown parameter (drained
test, Case 1).

are shown in Table 7. In the table, py, w;, wz, wp, and I,
signify the density of the soil particles, the initial water
content, the liquid limit, the plastic limit, and the plasticity
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Fig. 14. Parameter identification of two unknown parameters (drained
test, Case 2). R

index. The soil block sample was made at a preliminary
consolidation pressure of 49 kPa. Firstly, a confining
pressure of 147 kPa was furnished by a back pressure of

Py
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Fig. 15. Parameter identification of three unknown parameters (drained Fig. 16. Parameter identification of four unknown parameters (drained
test, Case 3). test, Case 4).
98 kPa. After one-dimensional consolidation with a con-  the soil block, as shown in Fig. 18. Fig. 19 shows the

solidation pressure of 49kPa (=147-98 kPa), a total loading history used in these tests. Fig. 20 shows the
partial load of 88.2 kPa was applied to the right side of  placement of the measurement instruments, which include
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Table 5
Parameter values finally identified in undrained shear tests.
Case Identified parameters

A K M 2o
True value 0.155 0.047 1.220 74.0
1-1 0.156 - - -
1-2 — 0.047 — -
1-3 — — 1.223 -
1-4 — - - 74.1
2-1 0.156 . 0.047 - -
2-2 0.169 - 1.270 -
2-3 0.216 - - 82.2
2-4 - 0.047 1.213 -
2-5 - 0.045 — 744
2-6 - - 1.220 74.6
3-1 0.217 0.049 1.313 -
32 0.230 0.046 - ©79.2
3-3 0.227 - 1.193 85.8
3-4 - 0.047 1.179 76.3
4-1 0.217 0.047 1.192 80.6
Table 6
Parameter values finally identified in drained shear fests.
Case Identified parameters

A K M o
True value 0.155 0.047 1.220 74.0
1-1 0.156 - - -
1-2 - 0.048 - -
1-3 — - 1.222 -
1-4 — - - 74.1
2-1 0.156 0.047 - —
22 0.156 - 1.228 -
2-3 0.176 — - 83.5
2-4 - 0.047 1.201 -
2-5 — 0.048 - 76.0
2-6 - - 1.099 104.3
3-1 0.158 0.052 1.246 -
3.2 0.223 0.049 - 108.5
3-3 . 0.157 - 1.129 79.8
3-4 - 0.055 1.073 79.5
4-1 0.197 0.057 1.064 104.7

displacement-tracing pointers (A-F) and pressure transdu-
cers (P1-P3). Since the front of the apparatus was made of
transparent acrylic plates, the movements of the pointers
during the ‘test were able to be recorded with a digital video
camera. The pore pressure was continnously measured
until the excess pore pressure had completely dissipated.

4.2, Simulation and setup of DA

The two-dimensiconal behavior of the block sample was
predicted by a soil-water coupled finite element analysis
with the Cam-clay model. Fig. 21 shows the finite element
mesh and the boundary conditions used for this analysis,
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Fig. 17. lustration of non-uniqueness problem in parameter identifica-
tion. (a) Undrained shear test and {(b) drained shear test.

The loading plate was assumed to be linear clastic and
represenied by a single column of elements with sufficient
stiffness. The values of the Cam-clay parameters and the
permeability of the block sample, estimated on the basis of
plasticity index I, are listed in Table 8. The values in the
parentheses represent the initial values for parameter
identification. The determination of the input parameters
followed the procedures proposed by lizuka and Ohta
(1987) and Nakase et al. (1988) for elasto-plastic/elasto-
viscoplastic constitutive models, which are summarized in
Table 9.

The application example in this chapter identified the
compression index 2, the critical state parameter M, and
the coefficient of permeability %, since these thtee para-
meters were found to be sensitive in the calculation. Just at
the time of partial loading, the clay block presented
undrained behavior, which is governed by sirength para-
meters such as effective internal friction angle ¢'. On the
other hand, after the loading process, the block exhibits
consolidation behavior, which is influenced by consolida-
tion parameters, such as 2 and k. Since the number of
parameters should be reduced for this parameter identifi-
cation, the swelling index x and the void ratio ep were given
after being estimated from plasticity index I, In this
problem, 1200 sets of particles, which were generated as
uniform random numbers, were utilized. Table 10 shows
the feasible ranges of the parameters to be identified.
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Fig. 18. Model test apparatus.

Table 7
Physical properties of Kaolin clay.

ps (gfom’)

wy (%) wy, (%) wp (%) L, (%) Clay fraction {%) Silt fraction (%)
2.63 529 58.2 374 20.8 42 58
100 T T § T i T L T I_f,f’ T’ (Unit : cm)
1
~71PL
i o
&
] 88.2 kPa ) L ey {72
= . 20 71 sl bl Al Tpa
2 ] A o & - !
3 0 Ko My Eh 8L T
= T 95 ( 20 Ll 1 | | ;
Er | Pt te
| 3.5 ! | {
! ! 1
3.0 4.0 4.0
0 N 1 f 1 L 1 L t L | j,,'I.r LS 'r‘
0 10 20 30 40 50 " 1670 1680 260
Elapsed time (min)

Fig. 19. Loading process of the model test.

Although the settlement and the lateral displacement,
measured at twelve points (A-L), and the pore water
pressure, measured by three transducers (P1--P3), as shown
in Fig. 21, were available, the scttlement measured at
pointers A, B, and C and the lateral displacement mea-
sured at pointers D, E, and F were used for this analysis.
This is because these measurement data just beneath the
loading plale are more responsive to the applied load than
the other data.

Fig. 20. Block sample size and placement of measurement instruments.

In case of using different types of observation data that
do not have the same units, such as displacements and pore
pressures, additional considerations are required. This is
because observed displacements and pore pressures usually
have a different order of magnitude of values and levels of
error, and can have different effects on the DA results. In
fact, the measured pore pressure values include relatively
large observation errors even though the displacements are
measured with higher accuracy. A strategy to overcome the
above issues includes the incorporation of a scaling
parameter into Eq. (14). The scaling parameter controls
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Fig. 21. Finite element mesh and the boundary conditions.
Table 8
Parameter values of the soil block sample.
v A K & M k (cm/min)
0.333 (0.114) 0.014 0.912 (1.209) (1.0x107%
Table 9

Simplified determination procedure for soil parameters based on the I,

2=0.015+0.007,

sin ¢’ =0.81-0.233 log(Z,)
M=6sin ¢/ (3 —sin ¢')
k=M/(1.750) -1
e=0.517+0.0191,

Tizuka and Ohta (1987)

Nakase et al. (1988)

Table 10

Feasible parameter space for parameters to be identified.

Parameters to be identified Feasible parameter space

A 0.08-0.38
M 0.90-1.50
k (cm/min) 1.0x107-1.0x 1078

the effect between measured displacemenis and pore
pressure, and its value can be appropriately determined
using model selection techniques, e.g., Akaike Bayesian
Information Criterion (ABIC; Akaike, 1980) and cross-
validation (e.g., Bishop, 2006).

It is an important task to determine covariance matrix
R,. In this analysis, a statistical method for evaluating and
comparing models referred to as the holdout validation
was utilized to determine covariance matrix R, (e.g.,
Kohavi, 1995). This method splits the observation data
into two mutually exclusive subsets: a training set and a
holdout set. In this method, a model is fit to the training
data, and the accuracy of the predictions is assessed using
the holdout set. The holdout validation appropriated in
this analysis is summarized in Appendix A.

Assuming that all observation errors are independent of
each other, covariance matrix R, is presented as follows:

[0.05100
0.00000
0.00000
0.00000
0.00000

L 0.00000
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0.00000
0.00000
0.00000
0.00000

0.00000
0.00000-
0.00960
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0.01200
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(17)

R,[:

where the non-diagonal covariance terms were assumed to
be zero.
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Fig. 22. Time evolution of identified parameters. (a) Compression index,
A (b) critical state parameter, M and (c) coefficient of permeability, k.
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4,3, Results and discussion beginning of the tests (1-10 min), each identified parameter
stays almost constant, However, after a lapse of 10 min or
Fig. 22 shows the time evolution of the identified parameters, = more, cach parameter changes dramatically. By the end of the
and (), (b), and (c) in the figure are the results of compression  test, each value has become nearly constant again. After a lapse
index A, critical state parameter M, and coefficient of perme-  of 1680 min, the identified parameters are as follows:
ability k, respectively. The assimilation starts with the weighted
mean values of the particles prepared at the initial stage, ie., A=0.092684, M=1415355, and k=590975510"° {em/s)

2=0.22927, M=120546, and k=6.095x107° (cm/s). At the (18)
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Fig. 23. Filtered distribution of weight.
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Fig. 23 shows the filtered distributions of the weights for
compression index A, critical state parameter M, and
coefficient of permeability k. In these figures, the vertical
axis is the weight and the horizontal axis is the parameter
value. According to these figures, after a lapse of 20 min,
most of the weights were uniformly distributed. After a
lapse of 40 min, however, some particles had gained a
significant amount of weight. After a lapse of 60 min, the
weights of only a few specific particles had become higher.
The distribution at a lapse of 100 min had a- smaller
variance than the distribution at a lapse of 20 min; there-
fore, the uncertainties about the identified parameters had
decreased. We see that, unlike the Gaussian filter e.g., the
KF, the arbitrary PDFs can be evaluated using a large
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Fig. 24. Simulation results of time-settlement relationship using the
identified parameters.

number of particles. This is the remarkable advantage of
the PF.

The three identified parameters, i.e., A, M, and k, were
used to simulate the time-settlement and the time-lateral
displacement relationships of the soil block. Figs. 24 and
25 compare the simulation results using the identified
parameters with the settlement measured at A, B, and C
and the lateral displacements at D, E, and F. In these
figures, four lines, namely DA (20 min), DA (60 min), DA
(100 min), and DA (1680 min), signify the simulation
results obtained by the parameters identified up to 20,
60, 100, and 1680 min, respectively. In Fig. 24, the
simulation results using parameters identified at the begin-

ning of the experiment, DA (20 min) and DA (40 min), P
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Fig. 25. Simulation results of time-lateral displacement relationship using
identified parameters.
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deviate somewhat from the measurements. However, the
results for DA (100 min) and DA (1680 min) show a good
agreement with the measured values. Similar results to
those for the lateral displacements (Fig. 25) were observed.
It is remarkable that long-term predictions can be achieved
with high accuracy, even though we wused only the
measured data for 100 min.

5. Ceoncluding remarks

This study has investigated the theoretical and the
practical effectiveness of the DA method, i.e., the PF, for
geotechnical problems, by applying the methodology to
the numerical experiments and the model test. First, we
have outlined the concepts and methods of DA, and the
P¥, which has high potential for application to geotechni-
cal engineering, was addressed and its mathematical for-
mulation and algorithms were briefty reviewed. Then, we
have dealt with the numerical experiments for the shear
behavior of a soil element under undrained/drained con-
ditions, where the model parameters of elasto-plastic
model have been identified by the PF. Finally, the PF
has been applied to the actual model test and the validity
was cvaluated by a comparison between the filtering
performance and the corresponding experimental data.
The following remarks can be noted:

(1) The PF does not require assumptions of linearity or
Gaussianity; it is applicable to general problems. In
addition, the PF method uses the recursive formula of
the sequential Bayesian framework directly and
approximates the posterior probability distributions
by means of appropriate weights associated with each
realization. The sampling methods of the PF can be
split into the SIR and the SIS. Since the mechanical
behavior of soils depends on both the current stress
and the recent stress history of the soil, the SIS
algorithm performs better in geotechnical problems
than the SIR algorithm. Thus, it has been confirmed
that the PF with the SIS algorithm holds the greatest
potential for application to geotechnical engineering,
and that existing technical problems in geomechanics
can be overcome through its use.

(2) The numerical tests have shown that the parameters
identified by the PF have converged into their true
values, and the approach presented in this study has
shown great promise as an accurate parameter-identi-
fication method for elasto-plastic geomaterials.

(3) The simulation results using the identified parameters
obtained with the PF were close to the actual measure-
ment data, and long-term predictions with high accuo-
racy were able to be achieved even though short-term
measurement data were used. The PF approach pro-
duces more information about the parameters of
interest than simple estimated values obtained from a
variational DA method; namely, the identification

.comes in the form of a PDF. The usefulness of the

PF approach for geotechnical practices was presented
through these results.

Appendix A

Here, we briefly show the holdout validation which was
used to determine covariance matrix R, The holdout
validation is a statistical method for evaluating and
comparing simulation models; it splits the data into two
mutually exclusive subsets, called a training set and a
holdout set or testing set, to avoid any overlap between the
training data. In this method, for each split, 2 model is fit
to the training data and the accuracy of the prediction is
assessed using the holdout set. In order to estimate the
accuracy of the models, a k-fold cross-validation is often
utilized. Although the k-fold cross-validation is a powerful
method for variable selection, a large-scale (high dimen-
sional) cross-validation is complicated and computation-
ally expensive. Therefore, a holdout validation was utilized
from the viewpoint of a simplicity and computation costs.

Firstly, we suppose that covariance matrix R, can be
written by the following formula:

«®B, 0 0
0 o8
REf) =@ ﬂ]éjk — : . 2 ;
0 .. 0 o0g
(i=12,..mj=12,..,n) (Al)

where o, B, and d; are the fitting parameter, the error
variance, and Kronecker’s delta, respectively. Superscript
(i) is the number of fitting parameters, and subscript j is the
observation point number. Then, non-diagonal covariance
term Rf‘j is assumed to be zero for simplicity. The following
paragraph notes the details of the determination flow.

A.1. Data partitioning

In a holdout validation, the observation data are split
into a training data set and a holdout set. Here, we
designated 3/4 of the observation data as the training set
and the remaining 1/4 as the holdout set. Fig. Al shows
the processed data at observation point A.

A.2. Error variance B;

* The error variance fi; is determined in terms of predicted
displacements w; (f=1,2...,n) at each displacement point by

2 2
— Y - % A2
i (E}’:l qul) (!ull+|uz|+---+lun|) 2

where n is the number of observation points and | -| stands
for the absolute values. The values for u; were obtained
from the simulation wusing the predetermined soil para-
meters listed in Table 8, and they are shown in Fig. A2.
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Fig. Al. Training and holdout set.

In these figures, u; stands for the displacements at each
displacement marker at the end of the observation term.
Therefore, j=1,2,...,6 corresponds to j=A, B,...,F.

Calculating f; for each displacement pointer, and incor-
porating Eq. (A2) inte Eq. (Al), yields the following
formula:

00850 0 0 0 0 0
0 00420 0 0 0 0
Ro_| © 0 00162 0 0 0
0 0 0 00B3:® 0 0
0 0 0 0 002080 0
0 0 0 0 0 00159
(A3)

A.3. Fitting parameter o

Parameters «@ (=1, 2,...,m) are scholarly values, which
adjust covariance matrix RY. Several values are assumed
as ol and the optimum value is selected using the holdout
validation. Here, the 21 values are set as o, which are

R R —
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Fig: A2. The prior predicted results of the displacements.

0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.04, 0.06,
0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0.

A.4. Objective function

The o, which minimizes objective function J@ given

by Eq. (Ad), is adopted as the optimum fitting
parameter
n NT B = \2
0= { c= Uy~ ) } (A4)
;; ET: 1(2?2 1 (ug?:—ﬁn,:)z)

where ¢ is the time step of the testing set and NT is the
number of plots of testing data. The u,(,’), and #,, are the
simulated and the measured displacements of measurement
point i at time step ¢ for each a®.

As a result, a® = 0.6 produced the minimum J®@ and the
optimum covariance matrix R, is given as
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